Abstract
The Mixed Lineage Leukemia (MLL) gene is frequently involved in chromosomal translocations that cause acute leukemia. More than 40 different genes have been identified as MLL translocation partners, with the expression of corresponding MLL fusion proteins. The MLL protein has histone methyltransferase activity and is required for embryonic development and hematopoiesis. Several proteins have been demonstrated to associate with MLL in a macromolecular complex, which is believed to have chromatin remodeling function. However, the C-terminal SET domain of MLL, which carries the histone methyltransferase activity, is lost in all MLL fusion proteins, thus making the biochemical functions of the fusion proteins unclear. Moreover, the promiscuity of MLL translocation partners, most of them with no known functions, further complicates an understanding of MLL leukemogenic mechanisms. In this study, we purified a protein complex containing AF4, the most common MLL translocation partner, using a combination of conventional column chromatography and immunoaffinity techniques. The AF4 protein complex contains AF5q31 and ENL, two other MLL translocation partners, as well as CDK9 and Cyclin T1, a heterodimer that regulates transcriptional elongation. Gel filtration confirmed that these five proteins co-fractionate with an estimated overall size of 0.8 MDa. All protein-protein interactions were further confirmed by immunoprecipitation-western blotting from K562 cell nuclear extract. To investigate whether these protein-protein interactions are retained in corresponding MLL fusion proteins, immunoprecipitation-western blotting assays were carried out in human leukemia cell lines harboring MLL chromosomal translocations. We found that MLL-AF4, MLL-AF5q31, MLL-ENL and MLL-AF9 each associate with wild type AF4 complex components, including CDK9 and Cyclin T1. In contrast, MLL-AF6 does not associate with any of the AF4 complex components. We propose that the four nuclear MLL translocation partner proteins (AF4, AF5q31, ENL/AF9), whose translocations are found in over 75% of MLL leukemias, associate in a higher order protein complex with CDK9 and Cyclin T1 and thus function in part to regulate transcriptional elongation. The association of CDK9 and Cyclin T1 with the four MLL fusion proteins suggests a common leukemogenic mechanism that may involve transcriptional elongation, which we are currently investigating. Conversely, MLL-cytosolic fusions, e.g. MLL-AF6, appear to function independently of association with the AF4 protein complex, possibly through a homo-dimerization pathway.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal