Abstract 29

Acute lymphoblastic leukemia (ALL) cells are frequently characterized by abnormal numbers of chromosomes, a condition known as aneuploidy. Aneuploidy in ALL is not just a curiosity, but impacts on the prognosis and risk stratification in children. Additionally, aneuploidy itself contributes to the development of cancer by dysregulating gene expression, and driving the loss of heterozygosity of mutated tumor suppressor genes. The molecular underpinnings of aneuploidy in ALL are largely unknown. The mitotic checkpoint is a complex pathway that acts in mitosis to prevent the premature onset of anaphase that leads to improper segregation of chromosomes and aneuploidy. Through the concerted action of many intermediates, the mitotic checkpoint functions to inhibit the activity of a large ubiquitin E3 ligase complex known as the anaphase promoting complex/cyclosome (APC/C) that drives the separation of paired sister chromatids by effecting the ubiquitin-dependent degradation of cyclin B1 and securin. The de-ubiquitinating enzyme USP44 was recently identified as an important regulator of mitotic progression that assists in maintaining mitotic checkpoint signaling until all chromosomes are properly attached to the mitotic spindle. Microarray studies of childhood acute leukemias have observed high levels of USP44 in T-cell ALL, but the significance of this observation is unclear. Here we show that USP44 is indeed over-expressed in T-ALL in children and that its presence may contribute to aneuploidy that is frequently observed in this disease. We compared the expression of USP44 in a series of 24 samples from patients with T-ALL to that found in ten samples of peripheral T-cells isolated from healthy donors, using quantitative real-time PCR. There was a dramatic increase in the expression of USP44 in T-ALL with 18 out of 24 cases having at least 3-fold increase, with an average of 16-fold increase, in USP44 mRNA. We next studied the consequences of USP44 over-expression in primary cells using live-cell microscopy. We find that excess USP44 leads to dramatic and significant increase in chromosome missegregation with most defects involving lagging chromosomes due to improper chromosome attachment to the mitotic spindle. We observe that these mitotic errors lead to the development of aneuploidy, through a mechanism that requires USP44 catalytic activity. These effects are accompanied by reinforced mitotic checkpoint signaling that leads to delayed progression through mitosis, and a prolonged duration of mitotic arrest in cells exposed to spindle poisons such as nocodazole or paclitaxel. At the molecular level, we observe that excess USP44 leads to enhanced binding of the mitotic checkpoint effector Mad2 to the APC/C and increased levels of cyclin B1 in early mitosis. Taken together, we conclude that USP44 is a chromosome instability gene that is frequently expressed at high levels in T-ALL cells, and that this may contribute to the pathogenesis of T-ALL by leading to chromosome shuffling and aneuploidy. These data have important implications in our understanding of the pathogenesis of this disease and may contribute to understanding the therapeutic effectiveness of novel aurora inhibitors in cancer.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution