Abstract 2333

.

MicroRNAs are important regulators of many hematopoietic processes, yet little is known with regard to the role of microRNAs in controlling normal hematopoietic regeneration. The most common methodology for in vivo microRNA studies follows a hypothesis-driven candidate approach. Here, we report the establishment of an unbiased, in vivo, microRNA gain-of-function screen, and the identification of miR-150 as a negative regulator of hematopoietic recovery post chemotherapeutic challenge.

Specifically, a retroviral-library consisting of 135 hematopoietic-expressed microRNAs was generated, with each expression construct containing a barcode sequence that can be specifically recognized using a novel bead-based platform. Hematopoietic-stem-and-progenitor-cell (HSPC)-enriched wild-type bone marrow was transduced with this library and transplanted into lethally-irradiated recipients. Analysis of peripheral blood samples from each recipient up to 11 weeks post transplantation revealed that 87% of the library barcodes are reliably detected. To identify microRNAs that regulate hematopoietic regeneration after chemotherapy-induced injury, we measured the change in barcode abundance for specific microRNA constructs after 5-fluorouracil (5-FU) challenge. Notably, a small number of barcodes were consistently depleted in multiple recipient mice after treatment. Among the top hits was the miR-150-associated barcode, which was selected for further experimentation. Indeed, overexpression of miR-150 in a competitive environment resulted in significantly lower recovery rates for peripheral myeloid and platelet populations after 5-FU treatment, whereas the effects on B- and T-cells were milder. Furthermore, full recovery of these cell populations did not occur until ∼12 weeks after treatment, suggesting the involvement of HSPCs and/or common lineage progenitors. Conversely, knocking out miR-150 led to an opposite phenotype, with platelets and myeloid cells displaying faster recovery in both competitive and non-competitive settings. Interestingly, we could not observe the described effects of miR-150 in bone marrow primary cell cultures, suggesting that such effects cannot be recapitulated in vitro.

Overall, these data indicate that miR-150 is a novel regulator of hematopoietic recovery after chemotherapeutic-induced injury, and highlight the important role of microRNAs in the intrinsic wiring of the hematopoietic regeneration program. Our experiments also demonstrate the feasibility and power of functional in vivo screens for studying normal hematopoietic functions, which can become an important tool in the hematology field.

Disclosures:

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution