Abstract
Abstract 2432
NPM1, is a highly conserved, ubiquitous nucleolar phosphoprotein that belongs to the nucleoplasmin family of nuclear chaperones. NPM1−/− mice die at mid-gestation (E11.5) from anemia, underscoring the gene's role in embryonic development. NPM1 is one of the most frequently mutated genes in AML. Mutations in NPM1 are found in 50% of normal karyotype AML patients, and mutant NPM1 (NPMc+) is aberrantly located in the cytoplasm of leukemic blasts in about 35% of all AML patients. Furthermore, NPM1 maps to a region on chromosome 5q that is the target of deletions in both de novo and therapy-associated human MDS. NPM1 thus acts as a haploinsufficient tumor suppressor in the hematological compartment, although the mechanism of its contribution to dysmyelopoiesis remains unknown. NPM-1+/− mice develop a hematological syndrome similar to that observed in human MDS, and develop AML over time. The NPM1 deficient model therefore provides a platform to interrogate the molecular basis of MDS.
We identified nucleophosmin (NPM1) in a screen for protein binding partners of C/EBPα. C/EBPα is a single exon gene, but is expressed as two isoforms that arise by alternate translation start sites to yield a full length C/EBPα p42 and a truncated dominant negative C/EBPα p30 isoform. Translational control of isoform expression is orchestrated by a conserved upstream open reading frame (uORF) in the 5' untranslated region (5'UTR) and modulated by the translation initiation factors eIF4E and eIF2. We generated factor-dependent myeloid cell lines from the bone marrow of Npm1+/+ and Npm1+/− mice. These lines are IL-3-dependent and inducible toward neutrophil maturation with GM-CSF and/ or all- trans retinoic acid (ATRA). Neutrophils derived from MNPM1+/− cells display defective neutrophil-specific gene expression, including a cassette of C/EBPα-dependent genes. These observations led us to postulate that myeloid abnormalities in NPM1 deficiency reflect an aberrant NPM1-C/EBPα axis. We show that NPM1 haploinsufficiency upregulates eIF4E (eukaryotic initiation factor 4E) (but not eIF2), which binds the mRNA-Cap (m7-GTP) as part of the mRNA translation initiation complex, eIF4F. Increased eIF4E is observed in about 30% of all malignancies. Initial increased eIF4E levels in MNPM+/− cells likely reflect transcriptional activation by the oncoprotein c-Myc, protein levels of which are also elevated in MNPM1+/− cells. We propose that increased eIF4E then induces increased C/EBPαp30 translation. C/EBPαp30 is a dominant negative inhibitor of full length C/EBPαp42 activity and disrupts normal neutrophil development. Furthermore, we demonstrate that C/EBPαp30 but not C/EBPαp42, activates the eIF4E promoter. We propose a positive feedback loop, wherein increased C/EBPαp30 induced by eIF4E further increases the expression of eIF4E. Our data suggest that NPM1 deficiency modulates neutrophil-specific gene expression by altering C/EBPα. We propose an aberrant feed-forward mechanism that increases levels of both eIF4E and C/EBPαp30 and likely contributes to MDS associated with NPM1 deficiency.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal