Specific combinations of Acute Myeloid Leukemia (AML) somatic mutations are associated with distinct clinical and biologic features. However, in vivo models do not exist for the majority of common, poor-prognosis genotypes. Concurrent mutations in FLT3 and TET2 are associated with adverse outcome. We hypothesized that activating mutations in FLT3 would cooperate with inactivating mutations in TET2to induce AML in vivo, and that we could investigate AML pathogenesis and therapeutic response using a genetic model of this poor-risk AML genotype.
To understand how these genes cooperate to induce AML, we generated Vav+Tet2fl/flFlt3-ITD mice, which resulted in fully penetrant, lethal disease in all recipient mice. Flow cytometric analysis revealed expansion of mac1+ cells in the peripheral blood, with progressive expansion of a c-Kit+, blast population which was apparent in the blood and bone marrow at 28 days, leading to lethal AML in all Vav+Tet2fl/flFlt3-ITD mice with a median survival of 12 months. Consistent with genetic data demonstrating most AML patients have monoallelic TET2 mutations, Vav+Tet2fl/+Flt3-ITD mice also develop AML, suggesting haploinsufficiency for Tet2 is sufficient to cooperate with the Flt3-ITD mutation to induce AML. All mice developed leukocytosis (median 85K/uL), splenomegaly (median 554mg) and hepatomegaly (median 2900mg) with evidence of extramedullary disease cell infiltration by leukemic blasts.
Flow cytometric analysis of stem/progenitor populations revealed expansion of the granulocyte-macrophage progenitor (GMP) population and the lin- sca+ kit+ (LSK) stem cell population. Detailed analysis of the LSK population revealed a decrease in the LT-HSC population (LSK CD150+ CD48-) that was replaced by a monomorphic CD48+ CD150- multipotent progenitor population. Given previous studies have shown that LSK and GMP cells can contain leukemia stem cells (LSC) in other models of AML, we performed secondary transplant studies with LSK and GMP populations. LSK (CD48+ CD150-) cells, but not GMP cells, were able to induce disease in secondary and tertiary recipients in vivo. In order to assess the sensitivity of Tet2/Flt3-mutant AML and specifically the LSCs, to targeted therapies, we treated primary and transplanted mice with chronic administration of AC220, a FLT3 inhibitor in late-stage clinical trials. AC220 treatment inhibited FLT3 signaling in vivo, and reduced peripheral blood counts/splenomegaly. However, FLT3 inhibition did not reduce the proportion of AML cells in the bone marrow and peripheral blood. AC220 therapy in vivo reduced the proportion of GMP cells, but not LSK cells, demonstrating LSCs in this model are resistant to FLT3-targeted anti-leukemic therapy.
We hypothesized that Tet2/Flt3-mutant LSCs possess a distinct epigenetic/transcriptional signature that contributes to leukemic cell self-renewal and therapeutic resistance. We performed RNA-seq using the Lifetech Proton sequencer to profile the expression landscape of Vav+Tet2fl/flFlt3-ITD mutant LSKs compared to normal stem cells. We were able to obtain an average of 62 million reads per sample. We identified over 400 genes differentially expressed in LSCs relative to normal hematopoietic stem cells (FC>2.5, padj <0.05). Of note, we found that genes involved in normal myelo-erythroid differentiation, including GATA1, GATA2, and EPOR, were transcriptionally silenced in LSCs relative to normal stem cells, consistent with their the impaired differentiation and increased self-renewal observed in LSCs. Enhanced representation bisulfite sequencing revealed a subset of these genes were marked by increased promoter methylation. The number of hyper differentially methylated regions (HyperDMRs, 10% methylation difference, FDR<0.2) was significantly greater in Vav+Tet2fl/flFlt3-ITD cells (787 HyperDMRs) compared to Vav+Tet2fl/fl cells (76 DMRs) suggesting FLT3 activation and TET2 loss cooperate to alter the epigenetic landscape in hematopoietic cells.
Our data demonstrate that TET and FLT3 mutations can cooperate to induce AML in vivo, with a defined LSC population that is resistant to targeted therapies and characterized by site-specific changes in DNA methylation and gene expression. Current studies are aimed to assess the functional role of specific gene targets in LSC survival, and at defining therapeutic liabilities that can be translated to the clinical context.
No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal