Allogeneic hematopoietic cell transplantation (HCT) is well established as a clinical means to treat patients with hematologic disorders and cancer. Human cord blood (CB) is a viable source of hematopoietic stem cells (HSC) for transplantation. However, numbers of nucleated cells retrieved, as well as limited numbers of HSC/progenitor cells (HPC) present, during collection may be problematic for treatment of adult patients with single CB HCT. One means to address the problem of limiting numbers of HSC/HPC is to ex vivo expand these cells for potential clinical use. While progress has been made in this endeavor, there is still a clinically relevant need for additional means to ex vivo expansion of human HSC and HPC.

OCT4, a transcriptional factor, plays an essential role in pluripotency and somatic cell reprogramming, however, the functions of OCT4 in HSC are largely unexplored. We hypothesized that OCT4 is involved in HSC function and expansion, and thus we first evaluated the effects of OAC1 (Oct4-activating compound 1) on ex vivo culture of CB CD34+ cells in the presence of a cocktail of cytokines (SCF, TPO and Flt3L) known to ex vivo expand human HSC. We found that CB CD34+ cells treated with OAC1 for 4 days showed a significant increase (2.8 fold increase, p<0.01) above that of cytokine cocktail in the numbers of rigorously defined HSC by phenotype (Lin-CD34+CD38-CD45RA-CD90+CD49f+) and in vivo repopulating capacity in both primary (3.1 fold increase, p<0.01) and secondary (1.9 fold increase, p<0.01) recipient NSG mice. OAC1 also significantly increased numbers of granulocyte/macrophage (CFU-GM, 2.7 fold increase, p<0.01), erythroid (BFU-E, 2.2 fold increase, p<0.01), and granulocyte, erythroid, macrophage, megakaryocyte (CFU-GEMM, 2.6 fold increase, p<0.01) progenitors above that of cytokine combinations as determined by colony assays. To further confirm the role of OCT4 in human HSC, we performed OCT4 overexpression in CB CD34+ cells using lentiviral vectors and found that overexpression of OCT4 also resulted in significant increase (2.6 fold increase, p<0.01) in the number of phenotypic HSC compared to control vectors. Together, our data indicate that activation of OCT4 by OAC1 or lentiviral vectors enhances ex vivo expansion of cytokine stimulated human CB HSC.

HOXB4 is a homeobox transcriptional factor that appears to be an essential regulator of HSC self-renewal. Overexpression of HOXB4 results in high-level ex vivo HSC expansion. It is reported that OCT4 can bind to the promoter region of HOXB4 at the site of 2952 bp from the transcription start point. We hypothesized that activation of OCT4 might work through upregulation of HOXB4 expression to ex vivo expand HSC. We observed that the expression of HOXB4 was largely increased (2.3 fold increase, p<0.01) after culture of CB CD34+ cells with OAC1 compared to vehicle control. siRNA mediated inhibition of OCT4 resulted in the marked reduction of HOXB4 expression (p<0.01) in OAC1-treated cells indicating that OAC1 treatment lead to OCT4-mediated upregulation of HOXB4 expression in HSC. Consistently, siRNA-mediated knockdown of HOXB4 expression led to a significant reduction in the number of Lin-CD34+CD38-CD45RA-CD90+CD49f+ HSC in OAC1-treated cells (p<0.05), suggesting HOXB4 is essential for the generation of primitive HSC in OAC1-treated cells. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC and sheds light on the potential clinical application of using OAC1 treatment to enhance ex vivo expansion of cytokine stimulated human HSC.

Disclosures

Broxmeyer:CordUse: Membership on an entity's Board of Directors or advisory committees.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution