Abstract
Multiple Myeloma is a B cell neoplasia characterized by the accumulation of clonal plasma cells within the bone marrow.Epigenetics is characterized by a wide range of changes that are reversible and orchestrate gene expression. Recent studies have shown that epigenetic modifications play a role in multiple myeloma (MM) by silencing various cancer-related genes.
We investigated the epigenetic genes differentially expressed between normal bone marrow plasma cells (BMPC ; N=5) and MM plasma cells from patients (N=206). Using SAM (Significance Analysis of Microarrays) analysis, only 12 genes significantly differentially expressed between BMPC and MM cells (ratio > 2 and FDR (false discovery rate) < 5%) were identified, including the EZH2 histone methyltransferase. EZH2, the enzymatic subunit of Polycomb Repressive Complex 2, is a histone methyltransferases able to repress gene expression by catalyzing H3K27me3 histone mark. EZH2 overexpression has been associated with numerous hematological malignancies, including MM. We thus studied EZH2 role in MM physiopathology and drug resistance. EZH2 expression was analyzed in normal bone marrow plasma cells (BMPCs; N=5), primary myeloma cells from newly diagnosed patients (MMCs; N=206) and human myeloma cell lines (HMCLs; N=40) using Affymetrix microarrays. EZH2 gene is significantly overexpressed in MMCs of patients (median 574, range 105 - 4562) compared to normal BMPCs (median = 432; range: 314 - 563) (P < 0.01). The expression is even higher in HMCLs (median 4481, range 581 - 8455) compared to primary MMCs or BMPCs (P < 0.001). High EZH2 expression is associated with a poor prognosis in 3 independent cohorts of newly diagnosed patients (Heidelberg-Montpellier cohort - N=206, UAMS-TT2 cohort - N=345 and UAMS-TT3 cohort - N =158). Furthermore, GSEA analysis of patients with high EZH2 expression highlighted a significant enrichment of genes involved in cell cycle, downregulated in mature plasma cells vs plasmablasts, and EZH2 targets. Specific EZH2 inhibition by EPZ-6438 EZH2 inhibitor induced a significant decrease of global H3K27me3 in all the HMCLs tested (P < 0.01) and inhibited MM cell growth in 5 out of the 6 HMCLs tested. The inhibitory effect of EZH2 inhibitor on MM cell growth appeared at day 6 suggesting that it is mediated by epigenetic reprogramming. To confirm that EZH2 is also required for the survival of primary MMCs from patients, primary MM cells (n = 17 patients) co-cultured with their bone marrow microenvironment and recombinant IL-6 were treated with EPZ-6438. As identified in HMCLs, EZH2 inhibition significantly reduced the median number of viable myeloma cells by 35% (P = 0.004) from a subset of patients (n=9) while the other group (n=8) was resistant. Of interest, EPZ-6438 induced a significant global H3K27me3 decrease in both groups of patient. RNA sequencing of 6 HMCLs treated with EPZ-6438 combined with H3K27me3 ChIP analyses allowed us to create an EZ GEP-based score able to predict HMCLs and primary MM cells sensitivity to EZH2 inhibitors. We also observed a synergy between EPZ-6438 and Lenalidomide, a conventional drug used for MM treatment. More interestingly, pretreatment of myeloma cells with EPZ-6438 significantly re-sensitize drug-resistant MM cells to Lenalidomide. Investigating the effect of EPZ-6438/Lenalidomide combination in MMC, we identified that IKZF1, IRF4 and MYC protein levels were significantly more inhibited by the combination treatment (65.5%, 63.9% and 14.8% respectively) compared with Lenalidomide (51.5%, 43% and 2.2%) or EPZ-6438 (45.2%, 38.7% and 6.2%) alone.
Clinical trials are ongoing with EZH2 inhibitors in lymphoma and could be promising for a subgroup of MM patients in combination with IMiDs. Furthermore, the EZ score enables identification of MM patients with an adverse prognosis and who could benefit from treatment with EZH2 inhibitors.
Goldschmidt:Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millennium: Membership on an entity's Board of Directors or advisory committees, Research Funding; Chugai: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Janssen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Hose:EngMab: Research Funding; Takeda: Other: Travel grant; Sanofi: Research Funding.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal