Mantle cell lymphoma (MCL) is an incurable B-cell malignancy characterized by genetic dysregulation of cyclin D1 and activation of signaling pathways driving uncontrolled MCL cell proliferation and survival. Ibrutinib is an FDA-approved irreversible inhibitor of Bruton's tyrosine kinase (BTK), a downstream target of the B-cell receptor (BCR) pathway. While ibrutinib exhibits significant single-agent therapeutic activity in patients with relapsed/refractory MCL, the vast majority of MCL patients on ibrutinib progress with aggressive disease and short survival (3-8 mo). Although ~80% of chronic lymphocytic leukemia patients with acquired ibrutinib resistance have mutations in BTK and PLCγ2, this is uncommon in MCL suggesting alternative mechanisms driving this resistant phenotype. Understanding drug-resistance mechanisms and developing effective therapies for ibrutinib resistant (IR) MCL are urgently needed.
The major type II protein arginine methyltransferase enzyme, PRMT5, catalyzes symmetric dimethylation of arginine residues on histone tails (H3R8 and H4R3) and other proteins. PRMT5 regulates a vast array of biologic functions including RNA processing, DNA damage response, signal transduction, and gene expression. Amplified PRMT5 activity drives the expression and activity of key oncogenes (MYC, CYCLIND1, NOTCH1) while silencing expression and activity of tumor suppressors (ST7, RBL2, and p53). Our group has shown PRMT5 is overexpressed and dysregulated in MCL and strategies aimed at selectively targeting PRMT5 show anti-tumor activity in preclinical lymphoma models.
Here we describe the development of a novel patient derived xenograft (PDX) of IR-MCL and explore PRMT5 inhibition as an alternative therapeutic option to circumvent IR. Peripheral blood mononuclear cells from a 75 yo male patient diagnosed with acquired classic IR-MCL were engrafted intravenously into NSG mice. After 5 passages, all mice engrafted with 107 MCL cells developed histologically confirmed MCL infiltrating kidney, lymph nodes, bone marrow, spleen and peripheral blood. Circulating human CD5+/CD19+ cells were detectable and quantifiable by flow cytometry by day 21 post-engraftment. Karyotype analysis confirmed the hallmark t(11;14)(q13;q32) of MCL while retaining nearly all cytogenetic abnormalities present in the patient's primary tumor including a deletion of chromosome 9, associated with deletion of MTAP, a therapeutic vulnerability for PRMT5-targeted therapy. Whole exome sequencing confirmed genomic stability with successive passages. Ex vivo cytotoxicity assays and protein pathway analysis further confirmed resistance to ibrutinib (IC50 >1 µM) with maintained hyper-phosphorylation of AKT (Ser473) and ERK (Thr202/Tyr204). Western blot analysis showed elevated levels of c-MYC, CYCLIND1, BCL2, and pERK. After validation of circulating disease at day 25 post engraftment, mice were treated with either a novel small molecule inhibitor of PRMT5 (PRT382, 10 mg/kg orally 4 days on 3 days off) or ibrutinib (75 mg/kg administered in drinking water, n=5 mice per treatment group). Treatment of this PDX model with PRT382 resulted in significantly decreased disease burden and improved median survival compared to control animals from 48 to 83 days, respectively (p=0.0045). We found no significant difference in survival (p= 0.6540) or circulating disease burden with ibrutinib therapy compared to control group. The full BTK occupancy of ibrutinib treated mice was validated using fluorescence resonance energy transfer-based assay. Ex vivo PDX MCL cells from PRT382-treated mice showed loss of symmetric dimethyl arginine with preservation of asymmetric dimethyl arginine levels, reduced H4(Sme2)R3 epigenetic marks, and elevated levels of BCL2, MYC, and pAKT/pERK. We developed a cell line (SEFA) allowing for in vitro mechanistic studies. We are currently investigating potential mechanisms responsible for circumventing IR-MCL by integrating genome-wide changes to chromatin accessibility and whole transcriptome analysis.
This IR-MCL PDX mouse model serves as a useful tool to investigate mechanisms of drug resistance, provides a platform to explore novel pre-clinical therapeutic strategies to circumvent IR and demonstrates the therapeutic activity of PRMT5 targeted therapy in this aggressive disease.
Byrd:Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; Ohio State University: Patents & Royalties: OSU-2S; Genentech: Research Funding; BeiGene: Research Funding; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Novartis: Other: Travel Expenses, Speakers Bureau; Genentech: Research Funding; Acerta: Research Funding; Acerta: Research Funding; Ohio State University: Patents & Royalties: OSU-2S; BeiGene: Research Funding; Genentech: Research Funding; BeiGene: Research Funding; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; Novartis: Other: Travel Expenses, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Novartis: Other: Travel Expenses, Speakers Bureau; Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau; Acerta: Research Funding; Ohio State University: Patents & Royalties: OSU-2S; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau. Vaddi:Prelude Therapeutics: Employment. Scherle:Prelude Therapeutics: Employment. Baiocchi:Prelude: Consultancy.
Author notes
Asterisk with author names denotes non-ASH members.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal