• EGR1 is overexpressed and further upregulated upon ibrutinib treatment in ibrutinib-resistant activated B-cell–like DLBCL and MCL cells.

  • EGR1 mediates metabolic reprogramming to OXPHOS through PDP1 transcription, and targeting OXPHOS with IM156 overcomes ibrutinib resistance.

The use of Bruton tyrosine kinase inhibitors, such as ibrutinib, to block B-cell receptor signaling has achieved a remarkable clinical response in several B-cell malignancies, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Acquired drug resistance, however, is significant and affects the long-term survival of these patients. Here, we demonstrate that the transcription factor early growth response gene 1 (EGR1) is involved in ibrutinib resistance. We found that EGR1 expression is elevated in ibrutinib-resistant activated B-cell–like subtype DLBCL and MCL cells and can be further upregulated upon ibrutinib treatment. Genetic and pharmacological analyses revealed that overexpressed EGR1 mediates ibrutinib resistance. Mechanistically, TCF4 and EGR1 self-regulation induce EGR1 overexpression that mediates metabolic reprogramming to oxidative phosphorylation (OXPHOS) through the transcriptional activation of PDP1, a phosphatase that dephosphorylates and activates the E1 component of the large pyruvate dehydrogenase complex. Therefore, EGR1-mediated PDP1 activation increases intracellular adenosine triphosphate production, leading to sufficient energy to enhance the proliferation and survival of ibrutinib-resistant lymphoma cells. Finally, we demonstrate that targeting OXPHOS with metformin or IM156, a newly developed OXPHOS inhibitor, inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting EGR1-mediated metabolic reprogramming to OXPHOS with metformin or IM156 provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory DLBCL or MCL.

1.
Alu
A
,
Lei
H
,
Han
X
,
Wei
Y
,
Wei
X
.
BTK inhibitors in the treatment of hematological malignancies and inflammatory diseases: mechanisms and clinical studies
.
J Hematol Oncol
.
2022
;
15
(
1
):
138
.
2.
Wilson
WH
,
Young
RM
,
Schmitz
R
, et al
.
Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma
.
Nat Med
.
2015
;
21
(
8
):
922
-
926
.
3.
Wilson
WH
,
Wright
GW
,
Huang
DW
, et al
.
Effect of ibrutinib with R-CHOP chemotherapy in genetic subtypes of DLBCL
.
Cancer Cell
.
2021
;
39
(
12
):
1643
-
1653.e3
.
4.
Nakhoda
S
,
Vistarop
A
,
Wang
YL
.
Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma
.
Br J Haematol
.
2023
;
200
(
2
):
137
-
149
.
5.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib
.
N Engl J Med
.
2014
;
370
(
24
):
2286
-
2294
.
6.
Burger
JA
,
Landau
DA
,
Taylor-Weiner
A
, et al
.
Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition
.
Nat Commun
.
2016
;
7
:
11589
.
7.
Kanagal-Shamanna
R
,
Jain
P
,
Patel
KP
, et al
.
Targeted multigene deep sequencing of Bruton tyrosine kinase inhibitor-resistant chronic lymphocytic leukemia with disease progression and Richter transformation
.
Cancer
.
2019
;
125
(
4
):
559
-
574
.
8.
Chiron
D
,
Di Liberto
M
,
Martin
P
, et al
.
Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma
.
Cancer Discov
.
2014
;
4
(
9
):
1022
-
1035
.
9.
Jain
P
,
Wang
M
.
Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management
.
Am J Hematol
.
2019
;
94
(
6
):
710
-
725
.
10.
Zhang
L
,
Yao
Y
,
Zhang
S
, et al
.
Metabolic reprogramming toward oxidative phosphorylation identifies a therapeutic target for mantle cell lymphoma
.
Sci Transl Med
.
2019
;
11
(
491
):
eaau1167
.
11.
Liu
S
,
Yang
P
,
Wang
L
, et al
.
Identification of six hub genes in mantle cell lymphoma patients with BTKi resistance
.
Ann Transl Med
.
2022
;
10
(
20
):
1105
.
12.
Shaffer
AL
,
Phelan
JD
,
Wang
JQ
, et al
.
Overcoming acquired epigenetic resistance to BTK inhibitors
.
Blood Cancer Discov
.
2021
;
2
(
6
):
630
-
647
.
13.
Rui
L
,
Drennan
AC
,
Ceribelli
M
, et al
.
Epigenetic gene regulation by Janus kinase 1 in diffuse large B-cell lymphoma
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
46
):
E7260
-
E7267
.
14.
Kimpara
S
,
Lu
L
,
Hoang
NM
, et al
.
EGR1 addiction in diffuse large B-cell lymphoma
.
Mol Cancer Res
.
2021
;
19
(
8
):
1258
-
1269
.
15.
Huang
B
,
Gudi
R
,
Wu
P
,
Harris
RA
,
Hamilton
J
,
Popov
KM
.
Isoenzymes of pyruvate dehydrogenase phosphatase. DNA-derived amino acid sequences, expression, and regulation
.
J Biol Chem
.
1998
;
273
(
28
):
17680
-
17688
.
16.
Vassylyev
DG
,
Symersky
J
.
Crystal structure of pyruvate dehydrogenase phosphatase 1 and its functional implications
.
J Mol Biol
.
2007
;
370
(
3
):
417
-
426
.
17.
Ianevski
A
,
Giri
AK
,
Aittokallio
T
.
SynergyFinder 2.0: visual analytics of multi-drug combination synergies
.
Nucleic Acids Res
.
2020
;
48
(
W1
):
W488
-
W493
.
18.
Mohanty
A
,
Sandoval
N
,
Phan
A
, et al
.
Regulation of SOX11 expression through CCND1 and STAT3 in mantle cell lymphoma
.
Blood
.
2019
;
133
(
4
):
306
-
318
.
19.
Herishanu
Y
,
Perez-Galan
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
20.
Cheng
S
,
Guo
A
,
Lu
P
,
Ma
J
,
Coleman
M
,
Wang
YL
.
Functional characterization of BTK(C481S) mutation that confers ibrutinib resistance: exploration of alternative kinase inhibitors
.
Leukemia
.
2015
;
29
(
4
):
895
-
900
.
21.
Li
Y
,
Bouchlaka
MN
,
Wolff
J
, et al
.
FBXO10 deficiency and BTK activation upregulate BCL2 expression in mantle cell lymphoma
.
Oncogene
.
2016
;
35
(
48
):
6223
-
6234
.
22.
Davis
RE
,
Ngo
VN
,
Lenz
G
, et al
.
Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma
.
Nature
.
2010
;
463
(
7277
):
88
-
92
.
23.
Glynne
R
,
Akkaraju
S
,
Healy
JI
,
Rayner
J
,
Goodnow
CC
,
Mack
DH
.
How self-tolerance and the immunosuppressive drug FK506 prevent B-cell mitogenesis
.
Nature
.
2000
;
403
(
6770
):
672
-
676
.
24.
Hoang
NM
,
Liu
Y
,
Bates
PD
, et al
.
A methylation-independent function of DNMT3A in mediating oxidative phosphorylation and ibrutinib resistance in mantle cell lymphoma
.
Cell Rep Med
.
Forthcoming
.
25.
Patel
MS
,
Nemeria
NS
,
Furey
W
,
Jordan
F
.
The pyruvate dehydrogenase complexes: structure-based function and regulation
.
J Biol Chem
.
2014
;
289
(
24
):
16615
-
16623
.
26.
Korotchkina
LG
,
Patel
MS
.
Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase
.
J Biol Chem
.
2001
;
276
(
40
):
37223
-
37229
.
27.
Kolobova
E
,
Tuganova
A
,
Boulatnikov
I
,
Popov
KM
.
Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites
.
Biochem J
.
2001
;
358
(
pt 1
):
69
-
77
.
28.
Pollak
MN
.
Investigating metformin for cancer prevention and treatment: the end of the beginning
.
Cancer Discov
.
2012
;
2
(
9
):
778
-
790
.
29.
Choi
J
,
Lee
JH
,
Koh
I
, et al
.
Inhibiting stemness and invasive properties of glioblastoma tumorsphere by combined treatment with temozolomide and a newly designed biguanide (HL156A)
.
Oncotarget
.
2016
;
7
(
40
):
65643
-
65659
.
30.
Lam
TG
,
Jeong
YS
,
Kim
SA
,
Ahn
SG
.
New metformin derivative HL156A prevents oral cancer progression by inhibiting the insulin-like growth factor/AKT/mammalian target of rapamycin pathways
.
Cancer Sci
.
2018
;
109
(
3
):
699
-
709
.
31.
Rha
Sun Young
,
Janku
F
,
Beom
SH
, et al
.
Phase I study of IM156, a novel potent biguanide oxidative phosphorylation (OXPHOS) inhibitor, in patients with advanced solid tumors
.
J Clin Oncol
.
2020
;
38
(
15 suppl
):
3590
.
32.
Izreig
S
,
Gariepy
A
,
Kaymak
I
, et al
.
Repression of LKB1 by miR-17 approximately 92 sensitizes MYC-dependent lymphoma to biguanide treatment
.
Cell Rep Med
.
2020
;
1
(
2
):
100014
.
33.
Wang
ML
,
Rule
S
,
Martin
P
, et al
.
Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2013
;
369
(
6
):
507
-
516
.
34.
Cheah
CY
,
Chihara
D
,
Romaguera
JE
, et al
.
Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes
.
Ann Oncol
.
2015
;
26
(
6
):
1175
-
1179
.
35.
Woyach
JA
,
Ruppert
AS
,
Guinn
D
, et al
.
BTK(C481S)-mediated resistance to ibrutinib in chronic lymphocytic leukemia
.
J Clin Oncol
.
2017
;
35
(
13
):
1437
-
1443
.
36.
Jones
D
,
Woyach
JA
,
Zhao
W
, et al
.
PLCG2 C2 domain mutations co-occur with BTK and PLCG2 resistance mutations in chronic lymphocytic leukemia undergoing ibrutinib treatment
.
Leukemia
.
2017
;
31
(
7
):
1645
-
1647
.
37.
Ahn
IE
,
Underbayev
C
,
Albitar
A
, et al
.
Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia
.
Blood
.
2017
;
129
(
11
):
1469
-
1479
.
38.
Scherer
F
,
Kurtz
DM
,
Newman
AM
, et al
.
Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA
.
Sci Transl Med
.
2016
;
8
(
364
):
364ra155
.
39.
Kahl
BS
,
Spurgeon
SE
,
Furman
RR
, et al
.
A phase 1 study of the PI3Kdelta inhibitor idelalisib in patients with relapsed/refractory mantle cell lymphoma (MCL)
.
Blood
.
2014
;
123
(
22
):
3398
-
3405
.
40.
Hess
G
,
Herbrecht
R
,
Romaguera
J
, et al
.
Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma
.
J Clin Oncol
.
2009
;
27
(
23
):
3822
-
3829
.
41.
Witzig
TE
,
Geyer
SM
,
Ghobrial
I
, et al
.
Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma
.
J Clin Oncol
.
2005
;
23
(
23
):
5347
-
5356
.
42.
Benci
JL
,
Xu
B
,
Qiu
Y
, et al
.
Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade
.
Cell
.
2016
;
167
(
6
):
1540
-
1554.e12
.
43.
Jacquelot
N
,
Yamazaki
T
,
Roberti
MP
, et al
.
Sustained type I interferon signaling as a mechanism of resistance to PD-1 blockade
.
Cell Res
.
2019
;
29
(
10
):
846
-
861
.
44.
Li
XY
,
Hou
L
,
Zhang
LY
, et al
.
OAS3 is a co-immune biomarker associated with tumour microenvironment, disease staging, prognosis, and treatment response in multiple cancer types
.
Front Cell Dev Biol
.
2022
;
10
:
815480
.
45.
Molina
JR
,
Sun
Y
,
Protopopova
M
, et al
.
An inhibitor of oxidative phosphorylation exploits cancer vulnerability
.
Nat Med
.
2018
;
24
(
7
):
1036
-
1046
.
46.
Yap
TA
,
Daver
N
,
Mahendra
M
, et al
.
Complex I inhibitor of oxidative phosphorylation in advanced solid tumors and acute myeloid leukemia: phase I trials
.
Nat Med
.
2023
;
29
(
1
):
115
-
126
.
You do not currently have access to this content.
Sign in via your Institution