• The hyperinflammation that characterizes PF is, at least in part, a consequence of inherited complement defects.

  • Missense mutations in ITGB2 simultaneously impair anti-inflammatory CR3 signaling and enhance proinflammatory CR4 signaling.

Abstract

Extreme disease phenotypes can provide key insights into the pathophysiology of common conditions, but studying such cases is challenging due to their rarity and the limited statistical power of existing methods. Herein, we used a novel approach to pathway–based mutational burden testing, the rare variant trend test (RVTT), to investigate genetic risk factors for an extreme form of sepsis-induced coagulopathy, infectious purpura fulminans (PF). In addition to prospective patient sample collection, we electronically screened over 10.4 million medical records from 4 large hospital systems and identified historical cases of PF for which archived specimens were available to perform germline whole-exome sequencing. We found a significantly increased burden of low-frequency, putatively function-altering variants in the complement system in patients with PF compared with unselected patients with sepsis (P = .01). A multivariable logistic regression analysis found that the number of complement system variants per patient was independently associated with PF after controlling for age, sex, and disease acuity (P = .01). Functional characterization of PF-associated variants in the immunomodulatory complement receptors CR3 and CR4 revealed that they result in partial or complete loss of anti-inflammatory CR3 function and/or gain of proinflammatory CR4 function. Taken together, these findings suggest that inherited defects in CR3 and CR4 predispose to the maladaptive hyperinflammation that characterizes severe sepsis with coagulopathy.

1.
Gando
S
,
Levi
M
,
Toh
CH
.
Disseminated intravascular coagulation
.
Nat Rev Dis Primers
.
2016
;
2
:
16037
.
2.
Colling
ME
,
Bendapudi
PK
.
Purpura fulminans: mechanism and management of dysregulated hemostasis
.
Transfus Med Rev
.
2018
;
32
(
2
):
69
-
76
.
3.
Lerolle
N
,
Carlotti
A
,
Melican
K
, et al
.
Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans
.
Am J Respir Crit Care Med
.
2013
;
188
(
6
):
684
-
692
.
4.
Popescu
NI
,
Lupu
C
,
Lupu
F
.
Disseminated intravascular coagulation and its immune mechanisms
.
Blood
.
2022
;
139
(
13
):
1973
-
1986
.
5.
Pawlinski
R
,
Mackman
N
.
Cellular sources of tissue factor in endotoxemia and sepsis
.
Thromb Res
.
2010
;
125
(
suppl 1
):
S70
-
73
.
6.
van der Poll
T
,
Büller
HR
,
ten Cate
H
, et al
.
Activation of coagulation after administration of tumor necrosis factor to normal subjects
.
N Engl J Med
.
1990
;
322
(
23
):
1622
-
1627
.
7.
Girardin
E
,
Grau
GE
,
Dayer
JM
,
Roux-Lombard
P
,
Lambert
PH
.
Tumor necrosis factor and interleukin-1 in the serum of children with severe infectious purpura
.
N Engl J Med
.
1988
;
319
(
7
):
397
-
400
.
8.
Faust
SN
,
Levin
M
,
Harrison
OB
, et al
.
Dysfunction of endothelial protein C activation in severe meningococcal sepsis
.
N Engl J Med
.
2001
;
345
(
6
):
408
-
416
.
9.
Bendapudi
PK
,
Robbins
A
,
LeBoeuf
N
, et al
.
Persistence of endothelial thrombomodulin in a patient with infectious purpura fulminans treated with protein C concentrate
.
Blood Adv
.
2018
;
2
(
21
):
2917
-
2921
.
10.
Landsem
A
,
Fure
H
,
Krey Ludviksen
J
, et al
.
Complement component 5 does not interfere with physiological hemostasis but is essential for Escherichia coli-induced coagulation accompanied by Toll-like receptor 4
.
Clin Exp Immunol
.
2019
;
196
(
1
):
97
-
110
.
11.
Lappegård
KT
,
Christiansen
D
,
Pharo
A
, et al
.
Human genetic deficiencies reveal the roles of complement in the inflammatory network: lessons from nature
.
Proc Natl Acad Sci U S A
.
2009
;
106
(
37
):
15861
-
15866
.
12.
Janco
RL
,
Morris
P
.
Serum augments the generation of monocyte procoagulant stimulated by bacterial lipopolysaccharide or chemotactic fragments of C5
.
Thromb Res
.
1983
;
32
(
1
):
73
-
86
.
13.
Lupu
F
,
Keshari
RS
,
Lambris
JD
,
Coggeshall
KM
.
Crosstalk between the coagulation and complement systems in sepsis
.
Thromb Res
.
2014
;
133
(
suppl 1
):
S28
-
31
.
14.
Konar
M
,
Granoff
DM
.
Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults
.
Blood
.
2017
;
130
(
7
):
891
-
899
.
15.
Klos
A
,
Tenner
AJ
,
Johswich
KO
,
Ager
RR
,
Reis
ES
,
Köhl
J
.
The role of the anaphylatoxins in health and disease
.
Mol Immunol
.
2009
;
46
(
14
):
2753
-
2766
.
16.
Tesh
VL
,
Duncan
RL
,
Morrison
DC
.
The interaction of Escherichia coli with normal human serum: the kinetics of serum-mediated lipopolysaccharide release and its dissociation from bacterial killing
.
J Immunol
.
1986
;
137
(
4
):
1329
-
1335
.
17.
O'Hara
AM
,
Moran
AP
,
Würzner
R
,
Orren
A
.
Complement-mediated lipopolysaccharide release and outer membrane damage in Escherichia coli J5: requirement for C9
.
Immunology
.
2001
;
102
(
3
):
365
-
372
.
18.
Lehner
PJ
,
Davies
KA
,
Walport
MJ
, et al
.
Meningococcal septicaemia in a C6-deficient patient and effects of plasma transfusion on lipopolysaccharide release
.
Lancet
.
1992
;
340
(
8832
):
1379
-
1381
.
19.
Granoff
DM
.
Relative importance of complement-mediated bactericidal and opsonic activity for protection against meningococcal disease
.
Vaccine
.
2009
;
27
(
suppl 2
):
B117
-
125
.
20.
Jawhara
S
,
Pluskota
E
,
Cao
W
,
Plow
EF
,
Soloviev
DA
.
Distinct effects of integrins alphaXbeta2 and alphaMbeta2 on leukocyte subpopulations during inflammation and antimicrobial responses
.
Infect Immun
.
2017
;
85
(
1
):
e00644-16
.
21.
Dustin
ML
.
Complement receptors in myeloid cell adhesion and phagocytosis
.
Microbiol Spectr
.
2016
;
4
(
6
).
22.
Wolf
D
,
Anto-Michel
N
,
Blankenbach
H
, et al
.
A ligand-specific blockade of the integrin Mac-1 selectively targets pathologic inflammation while maintaining protective host-defense
.
Nat Commun
.
2018
;
9
(
1
):
525
.
23.
Vorup-Jensen
T
,
Jensen
RK
.
Structural immunology of complement receptors 3 and 4
.
Front Immunol
.
2018
;
9
:
2716
.
24.
Fernández
FJ
,
Santos-López
J
,
Martínez-Barricarte
R
, et al
.
The crystal structure of iC3b-CR3 αI reveals a modular recognition of the main opsonin iC3b by the CR3 integrin receptor
.
Nat Commun
.
2022
;
13
(
1
):
1955
.
25.
Abram
CL
,
Lowell
CA
.
The ins and outs of leukocyte integrin signaling
.
Annu Rev Immunol
.
2009
;
27
:
339
-
362
.
26.
Dai
S
,
Rajaram
MV
,
Curry
HM
,
Leander
R
,
Schlesinger
LS
.
Fine tuning inflammation at the front door: macrophage complement receptor 3-mediates phagocytosis and immune suppression for Francisella tularensis
.
PLoS Pathog
.
2013
;
9
(
1
):
e1003114
.
27.
Rosetti
F
,
Mayadas
TN
.
The many faces of Mac-1 in autoimmune disease
.
Immunol Rev
.
2016
;
269
(
1
):
175
-
193
.
28.
Cao
C
,
Gao
Y
,
Li
Y
,
Antalis
TM
,
Castellino
FJ
,
Zhang
L
.
The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b
.
J Clin Invest
.
2010
;
120
(
6
):
1971
-
1980
.
29.
Chakravarti
A
,
Turner
TN
.
Revealing rate-limiting steps in complex disease biology: the crucial importance of studying rare, extreme-phenotype families
.
Bioessays
.
2016
;
38
(
6
):
578
-
586
.
30.
Barnett
IJ
,
Lee
S
,
Lin
X
.
Detecting rare variant effects using extreme phenotype sampling in sequencing association studies
.
Genet Epidemiol
.
2013
;
37
(
2
):
142
-
151
.
31.
Kousi
M
,
Söylemez
O
,
Ozanturk
A
, et al
.
Evidence for secondary-variant genetic burden and non-random distribution across biological modules in a recessive ciliopathy
.
Nat Genet
.
2020
;
52
(
11
):
1145
-
1150
.
32.
Lee
S
,
Choi
S
,
Kim
YJ
, et al
.
Pathway-based approach using hierarchical components of collapsed rare variants
.
Bioinformatics
.
2016
;
32
(
17
):
i586
-
i594
.
33.
Richardson
TG
,
Timpson
NJ
,
Campbell
C
,
Gaunt
TR
.
A pathway-centric approach to rare variant association analysis
.
Eur J Hum Genet
.
2016
;
25
(
1
):
123
-
129
.
34.
Vernon
KA
,
Ruseva
MM
,
Cook
HT
,
Botto
M
,
Malik
TH
,
Pickering
MC
.
Partial complement factor H deficiency associates with C3 glomerulopathy and thrombotic microangiopathy
.
J Am Soc Nephrol
.
2016
;
27
(
5
):
1334
-
1342
.
35.
Shields
AM
,
Pagnamenta
AT
,
Pollard
AJ
,
Taylor
JC
,
Allroggen
H
,
Patel
SY
;
OxClinWGS
.
Classical and non-classical presentations of complement factor I deficiency: two contrasting cases diagnosed via genetic and genomic methods
.
Front Immunol
.
2019
;
10
:
1150
.
36.
Vincent
JL
,
de Mendonça
A
,
Cantraine
F
, et al
.
Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine
.
Crit Care Med
.
1998
;
26
(
11
):
1793
-
1800
.
37.
Morgan
PB
. Complement Methods and Protocols.
Humana Press
;
2000
.
38.
Price
AL
,
Kryukov
GV
,
de Bakker
PI
, et al
.
Pooled association tests for rare variants in exon-resequencing studies
.
Am J Hum Genet
.
2010
;
86
(
6
):
832
-
838
.
39.
Hallacli
E
,
Kayatekin
C
,
Nazeen
S
, et al
.
The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability
.
Cell
.
2022
;
185
(
12
):
2035
-
2056.e33
.
40.
Gold
B
,
Merriam
JE
,
Zernant
J
, et al
.
Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration
.
Nat Genet
.
2006
;
38
(
4
):
458
-
462
.
41.
Morris
JA
,
Francois
C
,
Olson
PK
, et al
.
Genetic variation in complement component 2 of the classical complement pathway is associated with increased mortality and infection: a study of 627 patients with trauma
.
J Trauma
.
2009
;
66
(
5
):
1265
-
1270
. discussion 1270-1262.
42.
Frémeaux-Bacchi
V
,
Miller
EC
,
Liszewski
MK
, et al
.
Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome
.
Blood
.
2008
;
112
(
13
):
4948
-
4952
.
43.
Cataland
SR
,
Wu
HM
.
How I treat: the clinical differentiation and initial treatment of adult patients with atypical hemolytic uremic syndrome
.
Blood
.
2014
;
123
(
16
):
2478
-
2484
.
44.
Fernie
BA
,
Würzner
R
,
Orren
A
, et al
.
Molecular bases of combined subtotal deficiencies of C6 and C7: their effects in combination with other C6 and C7 deficiencies
.
J Immunol
.
1996
;
157
(
8
):
3648
-
3657
.
45.
Nelson
C
,
Rabb
H
,
Arnaout
MA
.
Genetic cause of leukocyte adhesion molecule deficiency. Abnormal splicing and a missense mutation in a conserved region of CD18 impair cell surface expression of beta 2 integrins
.
J Biol Chem
.
1992
;
267
(
5
):
3351
-
3357
.
46.
Chalmers
E
,
Cooper
P
,
Forman
K
, et al
.
Purpura fulminans: recognition, diagnosis and management
.
Arch Dis Child
.
2011
;
96
(
11
):
1066
-
1071
.
47.
Smith
OP
,
White
B
.
Infectious purpura fulminans: diagnosis and treatment
.
Br J Haematol
.
1999
;
104
(
2
):
202
-
207
.
48.
Rosier
F
,
Brisebarre
A
,
Dupuis
C
, et al
.
Genetic predisposition to the mortality in septic shock patients: from GWAS to the identification of a regulatory variant modulating the activity of a CISH enhancer
.
Int J Mol Sci
.
2021
;
22
(
11
):
5852
.
49.
Flores
C
.
Host genetics shapes adult sepsis survival
.
Lancet Respir Med
.
2015
;
3
(
1
):
7
-
8
.
50.
Rautanen
A
,
Mills
TC
,
Gordon
AC
, et al
.
Genome-wide association study of survival from sepsis due to pneumonia: an observational cohort study
.
Lancet Respir Med
.
2015
;
3
(
1
):
53
-
60
.
51.
Lu
H
,
Wen
D
,
Wang
X
, et al
.
Host genetic variants in sepsis risk: a field synopsis and meta-analysis
.
Crit Care
.
2019
;
23
(
1
):
26
.
52.
Brandtzaeg
P
,
Kierulf
P
,
Gaustad
P
, et al
.
Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease
.
J Infect Dis
.
1989
;
159
(
2
):
195
-
204
.
53.
Brandtzaeg
P
,
Sandset
PM
,
Joø
GB
,
Ovstebø
R
,
Abildgaard
U
,
Kierulf
P
.
The quantitative association of plasma endotoxin, antithrombin, protein C, extrinsic pathway inhibitor and fibrinopeptide A in systemic meningococcal disease
.
Thromb Res
.
1989
;
55
(
4
):
459
-
470
.
54.
Figueroa
J
,
Andreoni
J
,
Densen
P
.
Complement deficiency states and meningococcal disease
.
Immunol Res
.
1993
;
12
(
3
):
295
-
311
.
55.
Figueroa
JE
,
Densen
P
.
Infectious diseases associated with complement deficiencies
.
Clin Microbiol Rev
.
1991
;
4
(
3
):
359
-
395
.
56.
Gottschalk
TA
,
Hall
P
,
Tsantikos
E
,
L'Estrange-Stranieri
E
,
Hickey
MJ
,
Hibbs
ML
.
Loss of CD11b accelerates lupus nephritis in Lyn-deficient mice without disrupting glomerular leukocyte trafficking
.
Front Immunol
.
2022
;
13
:
875359
.
57.
Chaves
LD
,
Bao
L
,
Wang
Y
,
Chang
A
,
Haas
M
,
Quigg
RJ
.
Loss of CD11b exacerbates murine complement-mediated tubulointerstitial nephritis
.
PLoS One
.
2014
;
9
(
3
):
e92051
.
58.
Han
S
,
Kim-Howard
X
,
Deshmukh
H
, et al
.
Evaluation of imputation-based association in and around the integrin-alpha-M (ITGAM) gene and replication of robust association between a non-synonymous functional variant within ITGAM and systemic lupus erythematosus (SLE)
.
Hum Mol Genet
.
2009
;
18
(
6
):
1171
-
1180
.
59.
Cao
C
,
Lawrence
DA
,
Strickland
DK
,
Zhang
L
.
A specific role of integrin Mac-1 in accelerated macrophage efflux to the lymphatics
.
Blood
.
2005
;
106
(
9
):
3234
-
3241
.
60.
Xu
S
,
Wang
J
,
Wang
JH
,
Springer
TA
.
Distinct recognition of complement iC3b by integrins alphaXbeta2 and alphaMbeta2
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
13
):
3403
-
3408
.
61.
Bajic
G
,
Yatime
L
,
Sim
RB
,
Vorup-Jensen
T
,
Andersen
GR
.
Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
41
):
16426
-
16431
.
62.
Xie
C
,
Zhu
J
,
Chen
X
,
Mi
L
,
Nishida
N
,
Springer
TA
.
Structure of an integrin with an alphaI domain, complement receptor type 4
.
EMBO J
.
2010
;
29
(
3
):
666
-
679
.
63.
Frodsham
AJ
,
Hill
AV
.
Genetics of infectious diseases
.
Hum Mol Genet
.
2004
;
13
(
spec no 2
):
R187
-
194
.
You do not currently have access to this content.
Sign in via your Institution