• Jak2VF CH accelerated arterial thrombosis with a major role of increased young and more active Jak2VF platelets.

  • Jak2VF platelets mediate thromboxane cross talk to WT platelets, suggesting a potentially beneficial effect of aspirin in JAK2VF CH.

Abstract

JAK2V617F (JAK2VF) clonal hematopoiesis (CH) has been associated with atherothrombotic cardiovascular disease (CVD). We assessed the impact of Jak2VF CH on arterial thrombosis and explored the underlying mechanisms. A meta-analysis of 3 large cohort studies confirmed the association of JAK2VF with CVD and with platelet counts and adjusted mean platelet volume (MPV). In mice, 20% or 1.5% Jak2VF CH accelerated arterial thrombosis and increased platelet activation. Megakaryocytes in Jak2VF CH showed elevated proplatelet formation and release, increasing prothrombogenic reticulated platelet counts. Gp1ba-Cre–mediated expression of Jak2VF in platelets (VFGp1ba) increased platelet counts to a similar level as in 20% Jak2VF CH mice while having no effect on leukocyte counts. Like Jak2VF CH mice, VFGp1ba mice showed enhanced platelet activation and accelerated arterial thrombosis. In Jak2VF CH, both Jak2VF and wild-type (WT) platelets showed increased activation, suggesting cross talk between mutant and WT platelets. Jak2VF platelets showed twofold to threefold upregulation of COX-1 and COX-2, particularly in young platelets, with elevated cPLA2 activation and thromboxane A2 production. Compared with controls, conditioned media from activated Jak2VF platelets induced greater activation of WT platelets that was reversed by a thromboxane receptor antagonist. Low-dose aspirin ameliorated carotid artery thrombosis in VFGp1ba and Jak2VF CH mice but not in WT control mice. This study shows accelerated arterial thrombosis and platelet activation in Jak2VF CH with a major role of increased reticulated Jak2VF platelets, which mediate thromboxane cross talk with WT platelets and suggests a potential beneficial effect of aspirin in JAK2VF CH.

1.
Levine
RL
,
Pardanani
A
,
Tefferi
A
,
Gilliland
DG
.
Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders
.
Nat Rev Cancer
.
2007
;
7
(
9
):
673
-
683
.
2.
Jaiswal
S
,
Natarajan
P
,
Silver
AJ
, et al
.
Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease
.
N Engl J Med
.
2017
;
377
(
2
):
111
-
121
.
3.
Fuster
JJ
,
MacLauchlan
S
,
Zuriaga
MA
, et al
.
Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice
.
Science
.
2017
;
355
(
6327
):
842
-
847
.
4.
Kessler
MD
,
Damask
A
,
O'Keeffe
S
, et al
.
Common and rare variant associations with clonal haematopoiesis phenotypes
.
Nature
.
2022
;
612
(
7939
):
301
-
309
.
5.
Vlasschaert
C
,
Heimlich
JB
,
Rauh
MJ
,
Natarajan
P
,
Bick
AG
.
Interleukin-6 receptor polymorphism attenuates clonal hematopoiesis-mediated coronary artery disease risk among 451 180 individuals in the UK Biobank
.
Circulation
.
2023
;
147
(
4
):
358
-
360
.
6.
Wolach
O
,
Sellar
RS
,
Martinod
K
, et al
.
Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
436
):
eaan8292
.
7.
Fidler
TP
,
Xue
C
,
Yalcinkaya
M
, et al
.
The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis
.
Nature
.
2021
;
592
(
7853
):
296
-
301
.
8.
Liu
W
,
Ostberg
N
,
Yalcinkaya
M
, et al
.
Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis
.
J Clin Invest
.
2022
;
132
(
13
):
e155724
.
9.
Sano
S
,
Wang
Y
,
Yura
Y
, et al
.
JAK2 (V617F) -mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure
.
JACC Basic Transl Sci
.
2019
;
4
(
6
):
684
-
697
.
10.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
11.
Heinrich
AC
,
Pelanda
R
,
Klingmüller
U
.
A mouse model for visualization and conditional mutations in the erythroid lineage
.
Blood
.
2004
;
104
(
3
):
659
-
666
.
12.
Nagy
Z
,
Vogtle
T
,
Geer
MJ
, et al
.
The Gp1ba-Cre transgenic mouse: a new model to delineate platelet and leukocyte functions
.
Blood
.
2019
;
133
(
4
):
331
-
343
.
13.
Bick
AG
,
Weinstock
JS
,
Nandakumar
SK
, et al
.
Inherited causes of clonal haematopoiesis in 97,691 whole genomes
.
Nature
.
2020
;
586
(
7831
):
763
-
768
.
14.
Lamrani
L
,
Lacout
C
,
Ollivier
V
, et al
.
Hemostatic disorders in a JAK2V617F-driven mouse model of myeloproliferative neoplasm
.
Blood
.
2014
;
124
(
7
):
1136
-
1145
.
15.
Matsuura
S
,
Thompson
CR
,
Belghasem
ME
, et al
.
Platelet dysfunction and thrombosis in JAK2(V617F)-mutated primary myelofibrotic mice
.
Arterioscler Thromb Vasc Biol
.
2020
;
40
(
10
):
e262
-
e272
.
16.
Etheridge
SL
,
Roh
ME
,
Cosgrove
ME
, et al
.
JAK2V617F-positive endothelial cells contribute to clotting abnormalities in myeloproliferative neoplasms
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
6
):
2295
-
2300
.
17.
Huo
Y
,
Schober
A
,
Forlow
SB
, et al
.
Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E
.
Nat Med
.
2003
;
9
(
1
):
61
-
67
.
18.
Yokokawa
T
,
Misaka
T
,
Kimishima
Y
, et al
.
Clonal hematopoiesis and JAK2V617F mutations in patients with cardiovascular disease
.
JACC CardioOncol
.
2021
;
3
(
1
):
134
-
136
.
19.
Kristiansen
MH
,
Kjaer
L
,
Skov
V
, et al
.
JAK2V617F mutation is highly prevalent in patients with ischemic stroke: a case-control study
.
Blood Adv
.
2023
;
7
(
19
):
5825
-
5834
.
20.
Bongiovanni
D
,
Han
J
,
Klug
M
, et al
.
Role of reticulated platelets in cardiovascular disease
.
Arterioscler Thromb Vasc Biol
.
2022
;
42
(
5
):
527
-
539
.
21.
Panova-Noeva
M
,
Marchetti
M
,
Buoro
S
, et al
.
JAK2V617F mutation and hydroxyurea treatment as determinants of immature platelet parameters in essential thrombocythemia and polycythemia vera patients
.
Blood
.
2011
;
118
(
9
):
2599
-
2601
.
22.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
23.
Spivak
JL
.
Myeloproliferative neoplasms
.
N Engl J Med
.
2017
;
377
(
9
):
895
-
896
.
24.
Dragani
A
,
Pascale
S
,
Recchiuti
A
, et al
.
The contribution of cyclooxygenase-1 and -2 to persistent thromboxane biosynthesis in aspirin-treated essential thrombocythemia: implications for antiplatelet therapy
.
Blood
.
2010
;
115
(
5
):
1054
-
1061
.
25.
Hasselbalch
HC
,
Thomassen
M
,
Riley
CH
, et al
.
Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression
.
PLoS One
.
2014
;
9
(
11
):
e112786
.
26.
FitzGerald
GA
.
Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists
.
Am J Cardiol
.
1991
;
68
(
7
):
11B
-
15B
.
27.
Estevez
B
,
Du
X
.
New concepts and mechanisms of platelet activation signaling
.
Physiology (Bethesda)
.
2017
;
32
(
2
):
162
-
177
.
28.
Leslie
CC
.
Cytosolic phospholipase A(2): physiological function and role in disease
.
J Lipid Res
.
2015
;
56
(
8
):
1386
-
1402
.
29.
Tsutsumi
R
,
Harizanova
J
,
Stockert
R
,
Schroder
K
,
Bastiaens
PIH
,
Neel
BG
.
Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2
.
Nat Commun
.
2017
;
8
(
1
):
466
.
30.
Jang
JY
,
Min
JH
,
Chae
YH
, et al
.
Reactive oxygen species play a critical role in collagen-induced platelet activation via SHP-2 oxidation
.
Antioxid Redox Signal
.
2014
;
20
(
16
):
2528
-
2540
.
31.
Meng
TC
,
Fukada
T
,
Tonks
NK
.
Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo
.
Mol Cell
.
2002
;
9
(
2
):
387
-
399
.
32.
Jang
JY
,
Wang
SB
,
Min
JH
, et al
.
Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function
.
J Biol Chem
.
2015
;
290
(
18
):
11432
-
11442
.
33.
Munnix
IC
,
Strehl
A
,
Kuijpers
MJ
, et al
.
The glycoprotein VI-phospholipase Cgamma2 signaling pathway controls thrombus formation induced by collagen and tissue factor in vitro and in vivo
.
Arterioscler Thromb Vasc Biol
.
2005
;
25
(
12
):
2673
-
2678
.
34.
Delaney
MK
,
Kim
K
,
Estevez
B
, et al
.
Differential roles of the NADPH-oxidase 1 and 2 in platelet activation and thrombosis
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
5
):
846
-
854
.
35.
Hamberg
M
,
Svensson
J
,
Samuelsson
B
.
Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides
.
Proc Natl Acad Sci U S A
.
1975
;
72
(
8
):
2994
-
2998
.
36.
McNeil
JJ
,
Wolfe
R
,
Woods
RL
, et al
.
Effect of aspirin on cardiovascular events and bleeding in the healthy elderly
.
N Engl J Med
.
2018
;
379
(
16
):
1509
-
1518
.
37.
Hobbs
CM
,
Manning
H
,
Bennett
C
, et al
.
JAK2V617F leads to intrinsic changes in platelet formation and reactivity in a knock-in mouse model of essential thrombocythemia
.
Blood
.
2013
;
122
(
23
):
3787
-
3797
.
38.
Massberg
S
,
Grahl
L
,
von Bruehl
ML
, et al
.
Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases
.
Nat Med
.
2010
;
16
(
8
):
887
-
896
.
39.
Patrono
C
,
Rocca
B
,
De Stefano
V
.
Platelet activation and inhibition in polycythemia vera and essential thrombocythemia
.
Blood
.
2013
;
121
(
10
):
1701
-
1711
.
40.
Landolfi
R
,
Ciabattoni
G
,
Patrignani
P
, et al
.
Increased thromboxane biosynthesis in patients with polycythemia vera: evidence for aspirin-suppressible platelet activation in vivo
.
Blood
.
1992
;
80
(
8
):
1965
-
1971
.
41.
Cleland
JGF
.
Aspirin for primary and secondary prevention of cardiovascular disease: time to stop?
.
Thromb Haemost
.
2022
;
122
(
3
):
311
-
314
.
42.
Rocca
B
,
Tosetto
A
,
Betti
S
, et al
.
A randomized double-blind trial of 3 aspirin regimens to optimize antiplatelet therapy in essential thrombocythemia
.
Blood
.
2020
;
136
(
2
):
171
-
182
.
43.
Pascale
S
,
Petrucci
G
,
Dragani
A
, et al
.
Aspirin-insensitive thromboxane biosynthesis in essential thrombocythemia is explained by accelerated renewal of the drug target
.
Blood
.
2012
;
119
(
15
):
3595
-
3603
.
You do not currently have access to this content.
Sign in via your Institution