• Id3 limits PD-1 expression and exuberant effector differentiation of Th1 cells, protecting them from PD-1–mediated suppression during GVHD.

  • Id3 reduces chromatin accessibility of transcription factors that drive T-cell PD-1 transcription, differentiation, and dysfunction.

Abstract

Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway–mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19–directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg−/− mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell–based immunotherapy.

1.
Tkachev
V
,
Kaminski
J
,
Potter
EL
, et al
.
Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8(+) T cells drive gastrointestinal acute graft-versus-host disease
.
Sci Transl Med
.
2021
;
13
(
576
):
eabc0227
.
2.
Sacirbegovic
F
,
Gunther
M
,
Greco
A
, et al
.
Graft-versus-host disease is locally maintained in target tissues by resident progenitor-like T cells
.
Immunity
.
2023
;
56
(
2
):
369
-
385.e6
.
3.
Santos E Sousa
P
,
Cire
S
,
Conlan
T
, et al
.
Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease
.
JCI Insight
.
2018
;
3
(
5
):
e97011
.
4.
Yu
X
,
Ma
H
,
Li
B
, et al
.
A novel RIPK1 inhibitor reduces GVHD in mice via a non-immunosuppressive mechanism that restores intestinal homeostasis
.
Blood
.
2023
;
141
(
9
):
1070
-
1086
.
5.
Takashima
S
,
Martin
ML
,
Jansen
SA
, et al
.
T cell-derived interferon-gamma programs stem cell death in immune-mediated intestinal damage
.
Sci Immunol
.
2019
;
4
(
42
):
eaay8556
.
6.
Zeiser
R
,
Blazar
BR
.
Acute graft-versus-host disease - biologic process, prevention, and therapy
.
N Engl J Med
.
2017
;
377
(
22
):
2167
-
2179
.
7.
Ullrich
E
,
Abendroth
B
,
Rothamer
J
, et al
.
BATF-dependent IL-7RhiGM-CSF+ T cells control intestinal graft-versus-host disease
.
J Clin Invest
.
2018
;
128
(
3
):
916
-
930
.
8.
Hill
GR
,
Betts
BC
,
Tkachev
V
,
Kean
LS
,
Blazar
BR
.
Current concepts and advances in graft-versus-host disease immunology
.
Annu Rev Immunol
.
2021
;
39
:
19
-
49
.
9.
Piper
C
,
Zhou
V
,
Komorowski
R
, et al
.
Pathogenic Bhlhe40+ GM-CSF+ CD4+ T cells promote indirect alloantigen presentation in the GI tract during GVHD
.
Blood
.
2020
;
135
(
8
):
568
-
581
.
10.
Engel
JA
,
Lee
HJ
,
Williams
CG
, et al
.
Single-cell transcriptomics of alloreactive CD4+ T cells over time reveals divergent fates during gut graft-versus-host disease
.
JCI Insight
.
2020
;
5
(
13
):
e137990
.
11.
Jones-Mason
ME
,
Zhao
X
,
Kappes
D
,
Lasorella
A
,
Iavarone
A
,
Zhuang
Y
.
E protein transcription factors are required for the development of CD4(+) lineage T cells
.
Immunity
.
2012
;
36
(
3
):
348
-
361
.
12.
Lauritsen
JP
,
Wong
GW
,
Lee
SY
, et al
.
Marked induction of the helix-loop-helix protein Id3 promotes the gammadelta T cell fate and renders their functional maturation Notch independent
.
Immunity
.
2009
;
31
(
4
):
565
-
575
.
13.
Zhang
B
,
Lin
YY
,
Dai
M
,
Zhuang
Y
.
Id3 and Id2 act as a dual safety mechanism in regulating the development and population size of innate-like gammadelta T cells
.
J Immunol
.
2014
;
192
(
3
):
1055
-
1063
.
14.
Verykokakis
M
,
Krishnamoorthy
V
,
Iavarone
A
,
Lasorella
A
,
Sigvardsson
M
,
Kee
BL
.
Essential functions for ID proteins at multiple checkpoints in invariant NKT cell development
.
J Immunol
.
2013
;
191
(
12
):
5973
-
5983
.
15.
Yang
CY
,
Best
JA
,
Knell
J
, et al
.
The transcriptional regulators Id2 and Id3 control the formation of distinct memory CD8+ T cell subsets
.
Nat Immunol
.
2011
;
12
(
12
):
1221
-
1229
.
16.
Ji
Y
,
Pos
Z
,
Rao
M
, et al
.
Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells
.
Nat Immunol
.
2011
;
12
(
12
):
1230
-
1237
.
17.
Shan
Q
,
Hu
SS
,
Zhu
S
, et al
.
Tcf1 preprograms the mobilization of glycolysis in central memory CD8(+) T cells during recall responses
.
Nat Immunol
.
2022
;
23
(
3
):
386
-
398
.
18.
Shaw
LA
,
Deng
TZ
,
Omilusik
KD
,
Takehara
KK
,
Nguyen
QP
,
Goldrath
AW
.
Id3 expression identifies CD4(+) memory Th1 cells
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
29
):
e2204254119
.
19.
Utzschneider
DT
,
Gabriel
SS
,
Chisanga
D
, et al
.
Early precursor T cells establish and propagate T cell exhaustion in chronic infection
.
Nat Immunol
.
2020
;
21
(
10
):
1256
-
1266
.
20.
Wysocki
CA
,
Panoskaltsis-Mortari
A
,
Blazar
BR
,
Serody
JS
.
Leukocyte migration and graft-versus-host disease
.
Blood
.
2005
;
105
(
11
):
4191
-
4199
.
21.
Reshef
R
,
Luger
SM
,
Hexner
EO
, et al
.
Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease
.
N Engl J Med
.
2012
;
367
(
2
):
135
-
145
.
22.
Liu
X
,
Chen
X
,
Zhong
B
, et al
.
Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development
.
Nature
.
2014
;
507
(
7493
):
513
-
518
.
23.
Maruyama
T
,
Li
J
,
Vaque
JP
, et al
.
Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3
.
Nat Immunol
.
2011
;
12
(
1
):
86
-
95
.
24.
Freeman
GJ
,
Long
AJ
,
Iwai
Y
, et al
.
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation
.
J Exp Med
.
2000
;
192
(
7
):
1027
-
1034
.
25.
Sharpe
AH
,
Pauken
KE
.
The diverse functions of the PD1 inhibitory pathway
.
Nat Rev Immunol
.
2018
;
18
(
3
):
153
-
167
.
26.
Patankar
JV
,
Becker
C
.
Cell death in the gut epithelium and implications for chronic inflammation
.
Nat Rev Gastroenterol Hepatol
.
2020
;
17
(
9
):
543
-
556
.
27.
Blazar
BR
,
Carreno
BM
,
Panoskaltsis-Mortari
A
, et al
.
Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism
.
J Immunol
.
2003
;
171
(
3
):
1272
-
1277
.
28.
Deng
R
,
Cassady
K
,
Li
X
, et al
.
B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft-versus-host disease
.
J Immunol
.
2015
;
194
(
2
):
560
-
574
.
29.
Ni
X
,
Song
Q
,
Cassady
K
, et al
.
PD-L1 interacts with CD80 to regulate graft-versus-leukemia activity of donor CD8+ T cells
.
J Clin Invest
.
2017
;
127
(
5
):
1960
-
1977
.
30.
Herbaux
C
,
Gauthier
J
,
Brice
P
, et al
.
Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed Hodgkin lymphoma
.
Blood
.
2017
;
129
(
18
):
2471
-
2478
.
31.
Song
Q
,
Wang
X
,
Wu
X
, et al
.
Tolerogenic anti-IL-2 mAb prevents graft-versus-host disease while preserving strong graft-versus-leukemia activity
.
Blood
.
2021
;
137
(
16
):
2243
-
2255
.
32.
Tugues
S
,
Amorim
A
,
Spath
S
, et al
.
Graft-versus-host disease, but not graft-versus-leukemia immunity, is mediated by GM-CSF-licensed myeloid cells
.
Sci Transl Med
.
2018
;
10
(
469
):
eaat8410
.
33.
Zhang
Y
,
Joe
G
,
Hexner
E
,
Zhu
J
,
Emerson
SG
.
Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease
.
J Immunol
.
2005
;
174
(
5
):
3051
-
3058
.
34.
Patsoukis
N
,
Wang
Q
,
Strauss
L
,
Boussiotis
VA
.
Revisiting the PD-1 pathway
.
Sci Adv
.
2020
;
6
(
38
):
eabd2712
.
35.
Zhang
Y
,
Hexner
E
,
Frank
D
,
Emerson
SG
.
CD4+ T cells generated de novo from donor hemopoietic stem cells mediate the evolution from acute to chronic graft-versus-host disease
.
J Immunol
.
2007
;
179
(
5
):
3305
-
3314
.
36.
Sakuishi
K
,
Apetoh
L
,
Sullivan
JM
,
Blazar
BR
,
Kuchroo
VK
,
Anderson
AC
.
Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity
.
J Exp Med
.
2010
;
207
(
10
):
2187
-
2194
.
37.
van der Leun
AM
,
Thommen
DS
,
Schumacher
TN
.
CD8(+) T cell states in human cancer: insights from single-cell analysis
.
Nat Rev Cancer
.
2020
;
20
(
4
):
218
-
232
.
38.
Hui
E
,
Cheung
J
,
Zhu
J
, et al
.
T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition
.
Science
.
2017
;
355
(
6332
):
1428
-
1433
.
39.
Oestreich
KJ
,
Yoon
H
,
Ahmed
R
,
Boss
JM
.
NFATc1 regulates PD-1 expression upon T cell activation
.
J Immunol
.
2008
;
181
(
7
):
4832
-
4839
.
40.
Xiao
G
,
Deng
A
,
Liu
H
,
Ge
G
,
Liu
X
.
Activator protein 1 suppresses antitumor T-cell function via the induction of programmed death 1
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
38
):
15419
-
15424
.
41.
Khan
O
,
Giles
JR
,
McDonald
S
, et al
.
TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion
.
Nature
.
2019
;
571
(
7764
):
211
-
218
.
42.
Austin
JW
,
Lu
P
,
Majumder
P
,
Ahmed
R
,
Boss
JM
.
STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells
.
J Immunol
.
2014
;
192
(
10
):
4876
-
4886
.
43.
Good
CR
,
Aznar
MA
,
Kuramitsu
S
, et al
.
An NK-like CAR T cell transition in CAR T cell dysfunction
.
Cell
.
2021
;
184
(
25
):
6081
-
6100.e26
.
44.
Barrett
DM
,
Singh
N
,
Porter
DL
,
Grupp
SA
,
June
CH
.
Chimeric antigen receptor therapy for cancer
.
Annu Rev Med
.
2014
;
65
:
333
-
347
.
45.
Porter
DL
,
Levine
BL
,
Kalos
M
,
Bagg
A
,
June
CH
.
Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia
.
N Engl J Med
.
2011
;
365
(
8
):
725
-
733
.
46.
Li
X
,
Deng
R
,
He
W
, et al
.
Loss of B7-H1 expression by recipient parenchymal cells leads to expansion of infiltrating donor CD8+ T cells and persistence of graft-versus-host disease
.
J Immunol
.
2012
;
188
(
2
):
724
-
734
.
47.
Bally
AP
,
Austin
JW
,
Boss
JM
.
Genetic and epigenetic regulation of PD-1 expression
.
J Immunol
.
2016
;
196
(
6
):
2431
-
2437
.
48.
Seo
H
,
Chen
J
,
Gonzalez-Avalos
E
, et al
.
TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8(+) T cell exhaustion
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
25
):
12410
-
12415
.
49.
Zhou
M
,
Sacirbegovic
F
,
Zhao
K
,
Rosenberger
S
,
Shlomchik
WD
.
T cell exhaustion and a failure in antigen presentation drive resistance to the graft-versus-leukemia effect
.
Nat Commun
.
2020
;
11
(
1
):
4227
.
50.
Asakura
S
,
Hashimoto
D
,
Takashima
S
, et al
.
Alloantigen expression on non-hematopoietic cells reduces graft-versus-leukemia effects in mice
.
J Clin Invest
.
2010
;
120
(
7
):
2370
-
2378
.
51.
Flutter
B
,
Edwards
N
,
Fallah-Arani
F
, et al
.
Nonhematopoietic antigen blocks memory programming of alloreactive CD8+ T cells and drives their eventual exhaustion in mouse models of bone marrow transplantation
.
J Clin Invest
.
2010
;
120
(
11
):
3855
-
3868
.
52.
Ghosh
A
,
Smith
M
,
James
SE
, et al
.
Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity
.
Nat Med
.
2017
;
23
(
2
):
242
-
249
.
53.
Tang
TCY
,
Xu
N
,
Nordon
R
,
Haber
M
,
Micklethwaite
K
,
Dolnikov
A
.
Donor T cells for CAR T cell therapy
.
Biomark Res
.
2022
;
10
(
1
):
14
.
You do not currently have access to this content.
Sign in via your Institution