• Gain-of-function PIEZO1 enhances PS exposure in HX RBCs through its functional coupling to TMEM16F lipid scramblase.

  • Benzbromarone blocks PIEZO1 and decouples PIEZO1-TMEM16F, preventing PS exposure, echinocytosis, and hemolysis in HX RBCs.

Abstract

Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.

1.
Leventis
PA
,
Grinstein
S
.
The distribution and function of phosphatidylserine in cellular membranes
.
Annu Rev Biophys
.
2010
;
39
(
1
):
407
-
427
.
2.
Bevers
EM
,
Williamson
PL
.
Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane
.
Physiol Rev
.
2016
;
96
(
2
):
605
-
645
.
3.
Sakuragi
T
,
Nagata
S
.
Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
8
):
576
-
596
.
4.
Kay
JG
,
Grinstein
S
.
Phosphatidylserine-mediated cellular signaling
.
Adv Exp Med Biol
.
2013
;
991
:
177
-
193
.
5.
Krahling
S
,
Callahan
MK
,
Williamson
P
,
Schlegel
RA
.
Exposure of phosphatidylserine is a general feature in the phagocytosis of apoptotic lymphocytes by macrophages
.
Cell Death Differ
.
1999
;
6
(
2
):
183
-
189
.
6.
Shiratsuchi
A
,
Osada
S
,
Kanazawa
S
,
Nakanishi
Y
.
Essential role of phosphatidylserine externalization in apoptosing cell phagocytosis by macrophages
.
Biochem Biophys Res Commun
.
1998
;
246
(
2
):
549
-
555
.
7.
Segawa
K
,
Nagata
S
.
An apoptotic 'Eat Me' signal: phosphatidylserine exposure
.
Trends Cell Biol
.
2015
;
25
(
11
):
639
-
650
.
8.
Lentz
BR
.
Exposure of platelet membrane phosphatidylserine regulates blood coagulation
.
Prog Lipid Res
.
2003
;
42
(
5
):
423
-
438
.
9.
Verma
SK
,
Leikina
E
,
Melikov
K
, et al
.
Cell-surface phosphatidylserine regulates osteoclast precursor fusion
.
J Biol Chem
.
2018
;
293
(
1
):
254
-
270
.
10.
Gamage
DG
,
Melikov
K
,
Munoz-Tello
P
, et al
.
Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion
.
Proc Natl Acad Sci U S A
.
2022
;
119
(
38
):
e2202490119
.
11.
Zaitseva
E
,
Zaitsev
E
,
Melikov
K
, et al
.
Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine
.
Cell Host Microbe
.
2017
;
22
(
1
):
99
-
110.e7
.
12.
Jemielity
S
,
Wang
JJ
,
Chan
YK
, et al
.
TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine
.
PLoS Pathog
.
2013
;
9
(
3
):
e1003232
.
13.
Zhang
Y
,
Le
T
,
Grabau
R
, et al
.
TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development
.
Sci Adv
.
2020
;
6
(
19
):
eaba0310
.
14.
Brukman
NG
,
Uygur
B
,
Podbilewicz
B
,
Chernomordik
LV
.
How cells fuse
.
J Cell Biol
.
2019
;
218
(
5
):
1436
-
1451
.
15.
Wautier
M-P
,
Héron
E
,
Picot
J
,
Colin
Y
,
Hermine
O
,
Wautier
J-L
.
Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion
.
J Thromb Haemost
.
2011
;
9
(
5
):
1049
-
1055
.
16.
de Back
D
,
Kostova
E
,
van Kraaij
M
,
van den Berg
T
,
Van Bruggen
R
.
Of macrophages and red blood cells; a complex love story
.
Front Physiol
.
2014
;
5
(
9
):
00009
.
17.
Closse
C
,
Dachary-Prigent
J
,
Boisseau
MR
.
Phosphatidylserine-related adhesion of human erythrocytes to vascular endothelium
.
Br J Haematol
.
1999
;
107
(
2
):
300
-
302
.
18.
Bonomini
M
,
Sirolli
V
,
Reale
M
,
Arduini
A
.
Involvement of phosphatidylserine exposure in the recognition and phagocytosis of uremic erythrocytes
.
Am J Kidney Dis
.
2001
;
37
(
4
):
807
-
814
.
19.
Whelihan
MF
,
Mann
KG
.
The role of the red cell membrane in thrombin generation
.
Thromb Res
.
2013
;
131
(
5
):
377
-
382
.
20.
Whelihan
MF
,
Zachary
V
,
Orfeo
T
,
Mann
KG
.
Prothrombin activation in blood coagulation: the erythrocyte contribution to thrombin generation
.
Blood
.
2012
;
120
(
18
):
3837
-
3845
.
21.
Lang
KS
,
Lang
PA
,
Bauer
C
, et al
.
Mechanisms of suicidal erythrocyte death
.
Cell Physiol Biochem
.
2005
;
15
(
5
):
195
-
202
.
22.
Kuypers
FA
,
de Jong
K
.
The role of phosphatidylserine in recognition and removal of erythrocytes
.
Cell Mol Biol
.
2004
;
50
(
2
):
147
-
158
.
23.
Suzuki
J
,
Umeda
M
,
Sims
PJ
,
Nagata
S
.
Calcium-dependent phospholipid scrambling by TMEM16F
.
Nature
.
2010
;
468
(
7325
):
834
-
838
.
24.
Williamson
P
,
Kulick
A
,
Zachowski
A
,
Schlegel
RA
,
Devaux
PF
.
Ca2+ induces transbilayer redistribution of all major phospholipids in human erythrocytes
.
Biochemistry
.
1992
;
31
(
27
):
6355
-
6360
.
25.
Comfurius
P
,
Senden
JM
,
Tilly
RH
,
Schroit
AJ
,
Bevers
EM
,
Zwaal
RF
.
Loss of membrane phospholipid asymmetry in platelets and red cells may be associated with calcium-induced shedding of plasma membrane and inhibition of aminophospholipid translocase
.
Biochim Biophys Acta
.
1990
;
1026
(
2
):
153
-
160
.
26.
Bevers
E
,
Wiedmer
T
,
Comfurius
P
, et al
.
Defective Ca(2+)-induced microvesiculation and deficient expression of procoagulant activity in erythrocytes from a patient with a bleeding disorder: a study of the red blood cells of Scott syndrome
.
Blood
.
1992
;
79
(
2
):
380
-
388
.
27.
Yang
H
,
Kim
A
,
David
T
, et al
.
TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation
.
Cell
.
2012
;
151
(
1
):
111
-
122
.
28.
Fujii
T
,
Sakata
A
,
Nishimura
S
,
Eto
K
,
Nagata
S
.
TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
41
):
12800
-
12805
.
29.
Feng
S
,
Dang
S
,
Han
TW
, et al
.
Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling
.
Cell Rep
.
2019
;
28
(
2
):
567
-
579.e4
.
30.
Alvadia
C
,
Lim
NK
,
Clerico Mosina
V
,
Oostergetel
GT
,
Dutzler
R
,
Paulino
C
.
Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F
.
Elife
.
2019
;
8
:
e44365
.
31.
Yu
K
,
Whitlock
JM
,
Lee
K
,
Ortlund
EA
,
Yuan Cui
Y
,
Hartzell
HC
.
Identification of a lipid scrambling domain in ANO6/TMEM16F
.
Elife
.
2015
;
4
:
e06901
.
32.
Zwaal
RF
,
Comfurius
P
,
Bevers
EM
.
Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids
.
Biochim Biophys Acta
.
2004
;
1636
(
2-3
):
119
-
128
.
33.
Cahalan
SM
,
Lukacs
V
,
Ranade
SS
,
Chien
S
,
Bandell
M
,
Patapoutian
A
.
Piezo1 links mechanical forces to red blood cell volume
.
Elife
.
2015
;
4
:
e07370
.
34.
Kaufman
HW
,
Niles
JK
,
Gallagher
DR
, et al
.
Revised prevalence estimate of possible hereditary xerocytosis as derived from a large US Laboratory database
.
Am J Hematol
.
2018
;
93
(
1
):
E9
-
E12
.
35.
Gallagher
PG
.
Disorders of erythrocyte hydration
.
Blood
.
2017
;
130
(
25
):
2699
-
2708
.
36.
Jankovsky
N
,
Caulier
A
,
Demagny
J
, et al
.
Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis
.
Am J Hematol
.
2021
;
96
(
8
):
1017
-
1026
.
37.
Zarychanski
R
,
Schulz
VP
,
Houston
BL
, et al
.
Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis
.
Blood
.
2012
;
120
(
9
):
1908
-
1915
.
38.
Albuisson
J
,
Murthy
SE
,
Bandell
M
, et al
.
Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels
.
Nat Commun
.
2013
;
4
:
1884
.
39.
Martin-Almedina
S
,
Mansour
S
,
Ostergaard
P
.
Human phenotypes caused by PIEZO1 mutations; one gene, two overlapping phenotypes?
.
J Physiol
.
2018
;
596
(
6
):
985
-
992
.
40.
Andolfo
I
,
Manna
F
,
De Rosa
G
, et al
.
PIEZO1-R1864H rare variant accounts for a genetic phenotype-modifier role in dehydrated hereditary stomatocytosis
.
Haematologica
.
2018
;
103
(
3
):
e94
-
e97
.
41.
Andolfo
I
,
Russo
R
,
Gambale
A
,
Iolascon
A
.
New insights on hereditary erythrocyte membrane defects
.
Haematologica
.
2016
;
101
(
11
):
1284
-
1294
.
42.
Andolfo
I
,
Alper
SL
,
De Franceschi
L
, et al
.
Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1
.
Blood
.
2013
;
121
(
19
):
3925
-
3935
.
43.
Archer
NM
,
Shmukler
BE
,
Andolfo
I
, et al
.
Hereditary xerocytosis revisited
.
Am J Hematol
.
2014
;
89
(
12
):
1142
-
1146
.
44.
Glogowska
E
,
Schneider
ER
,
Maksimova
Y
, et al
.
Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis
.
Blood
.
2017
;
130
(
16
):
1845
-
1856
.
45.
de Meira Oliveira
P
,
Balan
A
,
Muto
NH
, et al
.
Heterogeneous phenotype of hereditary xerocytosis in association with PIEZO1 variants
.
Blood Cells Mol Dis
.
2020
;
82
:
102413
.
46.
Picard
V
,
Guitton
C
,
Thuret
I
, et al
.
Clinical and biological features in PIEZO1-hereditary xerocytosis and gardos channelopathy: a retrospective series of 126 patients
.
Haematologica
.
2019
;
104
(
8
):
1554
-
1564
.
47.
Carella
M
,
Stewart
G
,
Ajetunmobi
JF
, et al
.
Genomewide search for dehydrated hereditary stomatocytosis (hereditary xerocytosis): mapping of locus to chromosome 16 (16q23-qter)
.
Am J Hum Genet
.
1998
;
63
(
3
):
810
-
816
.
48.
Ma
S
,
Cahalan
S
,
Lamonte
G
,
Winzeler
EA
,
Andersen
KG
,
Patapoutian
A
.
Common PIEZO1 allele in African populations causes RBC dehydration and attenuates Plasmodium infection
.
Cell
.
2018
;
173
(
2
):
443
-
455.e12
.
49.
Le
T
,
Jia
Z
,
Le
SC
,
Zhang
Y
,
Chen
J
,
Yang
H
.
An inner activation gate controls TMEM16F phospholipid scrambling
.
Nat Commun
.
2019
;
10
:
1846
.
50.
Nagata
S
,
Suzuki
J
,
Segawa
K
,
Fujii
T
.
Exposure of phosphatidylserine on the cell surface
.
Cell Death Differ
.
2016
;
23
(
6
):
952
-
961
.
51.
Liang
P
,
Yang
H
.
Molecular underpinning of intracellular pH regulation on TMEM16F
.
J Gen Physiol
.
2021
;
153
(
2
):
e202012704
.
52.
Lang
PA
,
Kaiser
S
,
Myssina
S
,
Wieder
T
,
Lang
F
,
Huber
SM
.
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis
.
Am J Physiol Cell Physiol
.
2003
;
285
(
6
):
C1553
. C1260.
53.
Pivkin
IV
,
Peng
Z
,
Karniadakis
GE
,
Buffet
PA
,
Dao
M
,
Suresh
S
.
Biomechanics of red blood cells in human spleen and consequences for physiology and disease
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
28
):
7804
-
7809
.
54.
Coste
B
,
Mathur
J
,
Schmidt
M
, et al
.
Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels
.
Science
.
2010
;
330
(
6000
):
55
-
60
.
55.
Syeda
R
,
Xu
J
,
Dubin
AE
, et al
.
Chemical activation of the mechanotransduction channel Piezo1
.
Elife
.
2015
;
4
:
e07369
.
56.
Bae
C
,
Gnanasambandam
R
,
Nicolai
C
,
Sachs
F
,
Gottlieb
PA
.
Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
12
):
E1162
-
E1168
.
57.
Vaisey
G
,
Banerjee
P
,
North
AJ
,
Haselwandter
CA
,
MacKinnon
R
.
Piezo1 as a force-through-membrane sensor in red blood cells
.
Elife
.
2022
;
11
:
e82621
.
58.
Grubb
S
,
Poulsen
KA
,
Juul
CA
, et al
.
TMEM16F (Anoctamin 6), an anion channel of delayed Ca2+ activation
.
J Gen Physiol
.
2013
;
141
(
5
):
585
-
600
.
59.
Zhang
Y
,
Liang
P
,
Yang
L
, et al
.
Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion
.
Elife
.
2022
;
11
:
e78840
.
60.
Lin
H
,
Roh
J
,
Woo
JH
,
Kim
SJ
,
Nam
JH
.
TMEM16F/ANO6, a Ca2+-activated anion channel, is negatively regulated by the actin cytoskeleton and intracellular MgATP
.
Biochem Biophys Res Commun
.
2018
;
503
(
4
):
2348
-
2354
.
61.
Gallagher
PG
,
Chang
SH
,
Rettig
MP
, et al
.
Altered erythrocyte endothelial adherence and membrane phospholipid asymmetry in hereditary hydrocytosis
.
Blood
.
2003
;
101
(
11
):
4625
-
4627
.
62.
Le
T
,
Le
SC
,
Yang
H
.
Drosophila Subdued is a moonlighting transmembrane protein 16 (TMEM16) that transports ions and phospholipids
.
J Biol Chem
.
2019
;
294
(
12
):
4529
-
4537
.
63.
Andolfo
I
,
Monaco
V
,
Cozzolino
F
, et al
.
Proteome alterations in erythrocytes with PIEZO1 gain-of-function mutations
.
Blood Adv
.
2023
;
7
(
12
):
2681
-
2693
.
64.
Danielczok
JG
,
Terriac
E
,
Hertz
L
, et al
.
Red blood cell passage of small capillaries is associated with transient Ca2+-mediated adaptations
.
Front Physiol
.
2017
;
8
:
979
.
65.
Bae
C
,
Sachs
F
,
Gottlieb
PA
.
The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4
.
Biochemistry
.
2011
;
50
(
29
):
6295
-
6300
.
66.
Huang
F
,
Zhang
H
,
Wu
M
, et al
.
Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
40
):
16354
-
16359
.
67.
Schmaier
AA
,
Anderson
PF
,
Chen
SM
, et al
.
TMEM16E regulates endothelial cell procoagulant activity and thrombosis
.
J Clin Invest
.
2023
;
133
(
11
):
e163808
.
68.
Ousingsawat
J
,
Schreiber
R
,
Kunzelmann
K
.
TMEM16F/anoctamin 6 in ferroptotic cell death
.
Cancers
.
2019
;
11
(
5
):
625
-
640
.
69.
Danahay
H
,
Lilley
S
,
Adley
K
,
Charlton
H
,
Fox
R
,
Gosling
M
.
Niclosamide does not modulate airway epithelial function through blocking of the calcium activated chloride channel, TMEM16A
.
Front Pharmacol
.
2023
;
14
:
1142342
.
70.
Weisel
JW
,
Litvinov
RI
.
Red blood cells: the forgotten player in hemostasis and thrombosis
.
J Thromb Haemost
.
2019
;
17
(
2
):
271
-
282
.
71.
Gillespie
AH
,
Doctor
A
.
Red blood cell contribution to hemostasis
.
Front Pediatr
.
2021
;
9
:
629824
.
72.
Platt
OS
,
Lux
SE
,
Nathan
DG
.
Exercise-induced hemolysis in xerocytosis. Erythrocyte dehydration and shear sensitivity
.
J Clin Invest
.
1981
;
68
(
3
):
631
-
638
.
73.
Azevedo
VF
,
Kos
IA
,
Vargas-Santos
AB
,
da Rocha Castelar Pinheiro
G
,
dos Santos Paiva
E
.
Benzbromarone in the treatment of gout
.
Adv Rheumatol
.
2019
;
59
(
1
):
37
.
74.
Lee
MHH
,
Graham
GG
,
Williams
KM
,
Day
RO
.
A benefit-risk assessment of benzbromarone in the treatment of gout - was its withdrawal from the market in the best interest of patients?
.
Drug Saf
.
2008
;
31
(
8
):
643
-
665
.
75.
Ma
S
,
Dubin
AE
,
Zhang
Y
, et al
.
A role of PIEZO1 in iron metabolism in mice and humans
.
Cell
.
2021
;
184
(
4
):
969
-
982.e13
.
76.
Chansai
S
,
Yamsri
S
,
Fucharoen
S
,
Fucharoen
G
,
Teawtrakul
N
.
Phosphatidylserine-exposed red blood cells and ineffective erythropoiesis biomarkers in patients with thalassemia
.
Am J Transl Res
.
2022
;
14
(
7
):
4743
-
4756
.
77.
Wood
BL
,
Gibson
DF
,
Tait
JF
.
Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations
.
Blood
.
1996
;
88
(
5
):
1873
-
1880
.
78.
Ilkan
Z
,
Wright
JR
,
Goodall
AH
,
Gibbins
JM
,
Jones
CI
,
Mahaut-Smith
MP
.
Evidence for shear-mediated Ca2+entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line
.
J Biol Chem
.
2017
;
292
(
22
):
9204
-
9217
.
You do not currently have access to this content.
Sign in via your Institution