• CAR-37 T cells expanded to >98% of T cells and led to complete responses but caused severe cytopenia associated with high levels of IL-18.

  • Depleting CAR-37 T cells using cetuximab to target the safety switch was unsuccessful in the setting of neutropenia.

Abstract

We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients. Tumor responses were observed in 4 of 5 patients with 3 complete responses, 1 mixed response, and 1 patient whose disease progressed rapidly and with relative loss of CD37 expression. Three patients experienced prolonged and severe pancytopenia, and in 2 of these patients, efforts to ablate CAR-37 T cells, which were engineered to coexpress truncated epidermal growth factor receptor, with cetuximab were unsuccessful. Hematopoiesis was restored in these 2 patients after allogeneic hematopoietic stem cell transplantation. No other severe, nonhematopoietic toxicities occurred. We investigated the mechanisms of profound pancytopenia and did not observe activation of CAR-37 T cells in response to hematopoietic stem cells in vitro or hematotoxicity in humanized models. Patients with pancytopenia had sustained high levels of interleukin-18 (IL-18) with low levels of IL-18 binding protein in their peripheral blood. IL-18 levels were significantly higher in CAR-37–treated patients than in both cytopenic and noncytopenic cohorts of CAR-19–treated patients. In conclusion, CAR-37 T cells exhibited antitumor activity, with significant CAR expansion and cytokine production. CAR-37 T cells may be an effective therapy in hematologic malignancies as a bridge to hematopoietic stem cell transplant. This trial was registered at www.ClinicalTrials.gov as #NCT04136275.

1.
Locke
FL
,
Miklos
DB
,
Jacobson
CA
, et al
.
Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma
.
N Engl J Med
.
2022
;
386
(
7
):
640
-
654
.
2.
Abramson
JS
,
Solomon
SR
,
Arnason
J
, et al
.
Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study
.
Blood
.
2023
;
141
(
14
):
1675
-
1684
.
3.
Kamdar
M
,
Solomon
SR
,
Arnason
J
, et al
.
Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): results from an interim analysis of an open-label, randomised, phase 3 trial
.
Lancet
.
2022
;
399
(
10343
):
2294
-
2308
.
4.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
5.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
6.
Wang
M
,
Munoz
J
,
Goy
A
, et al
.
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma
.
N Engl J Med
.
2020
;
382
(
14
):
1331
-
1342
.
7.
Shah
BD
,
Ghobadi
A
,
Oluwole
OO
, et al
.
KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study
.
Lancet
.
2021
;
398
(
10299
):
491
-
502
.
8.
Jacobson
CA
,
Chavez
JC
,
Sehgal
AR
, et al
.
Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2022
;
23
(
1
):
91
-
103
.
9.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
10.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
839
-
852
.
11.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
12.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
13.
Park
JH
,
Riviere
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
14.
Locke
FL
,
Ghobadi
A
,
Jacobson
CA
, et al
.
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial
.
Lancet Oncol
.
2019
;
20
(
1
):
31
-
42
.
15.
Majzner
RG
,
Mackall
CL
.
Tumor antigen escape from CAR T-cell therapy
.
Cancer Discov
.
2018
;
8
(
10
):
1219
-
1226
.
16.
Shah
NN
,
Fry
TJ
.
Mechanisms of resistance to CAR T cell therapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
6
):
372
-
385
.
17.
Wang
J
,
Hu
Y
,
Huang
H
.
Acute lymphoblastic leukemia relapse after CD19-targeted chimeric antigen receptor T cell therapy
.
J Leukoc Biol
.
2017
;
102
(
6
):
1347
-
1356
.
18.
Spiegel
JY
,
Patel
S
,
Muffly
L
, et al
.
CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial
.
Nat Med
.
2021
;
27
(
8
):
1419
-
1431
.
19.
Barrena
S
,
Almeida
J
,
Yunta
M
, et al
.
Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation
.
Leukemia
.
2005
;
19
(
8
):
1376
-
1383
.
20.
de Winde
CM
,
Zuidscherwoude
M
,
Vasaturo
A
,
van der Schaaf
A
,
Figdor
CG
,
van Spriel
AB
.
Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs
.
Histochem Cell Biol
.
2015
;
144
(
2
):
133
-
146
.
21.
Pereira
DS
,
Guevara
CI
,
Jin
L
, et al
.
AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: a new role for CD37 in AML
.
Mol Cancer Ther
.
2015
;
14
(
7
):
1650
-
1660
.
22.
Ma
H
,
Abdul-Hay
M
.
T-cell lymphomas, a challenging disease: types, treatments, and future
.
Int J Clin Oncol
.
2017
;
22
(
1
):
18
-
51
.
23.
Moskowitz
AJ
,
Lunning
MA
,
Horwitz
SM
.
How I treat the peripheral T-cell lymphomas
.
Blood
.
2014
;
123
(
17
):
2636
-
2644
.
24.
Choi
J
,
Cooper
ML
,
Staser
K
, et al
.
An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies
.
Leukemia
.
2018
;
32
(
11
):
2483
-
2494
.
25.
Stilgenbauer
S
,
Aurran Schleinitz
T
,
Eichhorst
B
, et al
.
Phase 1 first-in-human trial of the anti-CD37 antibody BI 836826 in relapsed/refractory chronic lymphocytic leukemia
.
Leukemia
.
2019
;
33
(
10
):
2531
-
2535
.
26.
Stathis
A
,
Flinn
IW
,
Madan
S
, et al
.
Safety, tolerability, and preliminary activity of IMGN529, a CD37-targeted antibody-drug conjugate, in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: a dose-escalation, phase I study
.
Invest New Drugs
.
2018
;
36
(
5
):
869
-
876
.
27.
Stokke
C
,
Blakkisrud
J
,
Løndalen
A
, et al
.
Pre-dosing with lilotomab prior to therapy with (177)Lu-lilotomab satetraxetan significantly increases the ratio of tumor to red marrow absorbed dose in non-Hodgkin lymphoma patients
.
Eur J Nucl Med Mol Imaging
.
2018
;
45
(
7
):
1233
-
1241
.
28.
Kolstad
A
,
Illidge
T
,
Bolstad
N
, et al
.
Phase 1/2a study of 177Lu-lilotomab satetraxetan in relapsed/refractory indolent non-Hodgkin lymphoma
.
Blood Adv
.
2020
;
4
(
17
):
4091
-
4101
.
29.
Robak
T
,
Hellmann
A
,
Kloczko
J
, et al
.
Randomized phase 2 study of otlertuzumab and bendamustine versus bendamustine in patients with relapsed chronic lymphocytic leukaemia
.
Br J Haematol
.
2017
;
176
(
4
):
618
-
628
.
30.
Danilov
AV
,
Spurgeon
SE
,
Siddiqi
T
, et al
.
A phase Ib, open label, dose escalation trial of the anti-CD37 monoclonal antibody, BI 836826, in combination with ibrutinib in patients with relapsed/refractory chronic lymphocytic leukemia
.
Invest New Drugs
.
2021
;
39
(
4
):
1099
-
1105
.
31.
Scarfo
I
,
Ormhøj
M
,
Frigault
MJ
, et al
.
Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas
.
Blood
.
2018
;
132
(
14
):
1495
-
1506
.
32.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT Consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
33.
Hines
MR
,
Knight
TE
,
McNerney
KO
, et al
.
Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome
.
Transplant Cell Ther
.
2023
;
29
(
7
):
438.e1
-
438.e16
.
34.
Blick
SK
,
Scott
LJ
.
Cetuximab: a review of its use in squamous cell carcinoma of the head and neck and metastatic colorectal cancer
.
Drugs
.
2007
;
67
(
17
):
2585
-
2607
.
35.
Paszkiewicz
PJ
,
Frassle
SP
,
Srivastava
S
, et al
.
Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia
.
J Clin Invest
.
2016
;
126
(
11
):
4262
-
4272
.
36.
Wang
X
,
Chang
WC
,
Wong
CW
, et al
.
A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells
.
Blood
.
2011
;
118
(
5
):
1255
-
1263
.
37.
Ogasawara
K
,
Lymp
J
,
Mack
T
, et al
.
In vivo cellular expansion of lisocabtagene maraleucel and association with efficacy and safety in relapsed/refractory large B-cell lymphoma
.
Clin Pharmacol Ther
.
2022
;
112
(
1
):
81
-
89
.
38.
Kimura
H
,
Sakai
K
,
Arao
T
,
Shimoyama
T
,
Tamura
T
,
Nishio
K
.
Antibody-dependent cellular cytotoxicity of cetuximab against tumor cells with wild-type or mutant epidermal growth factor receptor
.
Cancer Sci
.
2007
;
98
(
8
):
1275
-
1280
.
39.
Strati
P
,
Li
X
,
Deng
Q
, et al
.
Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNgamma-expressing CD8 T cells
.
Cell Rep Med
.
2023
;
4
(
8
):
101158
.
40.
Morales-Mantilla
DE
,
King
KY
.
The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease
.
Curr Stem Cell Rep
.
2018
;
4
(
3
):
264
-
271
.
41.
Maciejewski
J
,
Selleri
C
,
Anderson
S
,
Young
NS
.
Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro
.
Blood
.
1995
;
85
(
11
):
3183
-
3190
.
42.
Alvarado
LJ
,
Huntsman
HD
,
Cheng
H
, et al
.
Eltrombopag maintains human hematopoietic stem and progenitor cells under inflammatory conditions mediated by IFN-gamma
.
Blood
.
2019
;
133
(
19
):
2043
-
2055
.
43.
Rejeski
K
,
Perez
A
,
Sesques
P
, et al
.
CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma
.
Blood
.
2021
;
138
(
24
):
2499
-
2513
.
44.
Rocco
JM
,
Inglefield
J
,
Yates
B
, et al
.
Free interleukin-18 is elevated in CD22 CAR T-cell-associated hemophagocytic lymphohistiocytosis-like toxicities
.
Blood Adv
.
2023
;
7
(
20
):
6134
-
6139
.
45.
Haradhvala
NJ
,
Leick
MB
,
Maurer
K
, et al
.
Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma
.
Nat Med
.
2022
;
28
(
9
):
1848
-
1859
.
46.
Melms
JC
,
Biermann
J
,
Huang
H
, et al
.
A molecular single-cell lung atlas of lethal COVID-19
.
Nature
.
2021
;
595
(
7865
):
114
-
119
.
47.
Landy
E
,
Carol
H
,
Ring
A
,
Canna
S
.
Biological and clinical roles of IL-18 in inflammatory diseases
.
Nat Rev Rheumatol
.
2024
;
20
(
1
):
33
-
47
.
48.
Fraietta
JA
,
Lacey
SF
,
Orlando
EJ
, et al
.
Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia
.
Nat Med
.
2018
;
24
(
5
):
563
-
571
.
49.
Mueller
KT
,
Maude
SL
,
Porter
DL
, et al
.
Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia
.
Blood
.
2017
;
130
(
21
):
2317
-
2325
.
50.
Morris
EC
,
Neelapu
SS
,
Giavridis
T
,
Sadelain
M
.
Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy
.
Nat Rev Immunol
.
2022
;
22
(
2
):
85
-
96
.
51.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al
.
Chimeric antigen receptor T-cell therapy - assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
52.
Jain
T
,
Knezevic
A
,
Pennisi
M
, et al
.
Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies
.
Blood Adv
.
2020
;
4
(
15
):
3776
-
3787
.
53.
Mullanfiroze
K
,
Lazareva
A
,
Chu
J
, et al
.
CD34+-selected stem cell boost can safely improve cytopenias following CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
16
):
4715
-
4718
.
54.
Rejeski
K
,
Burchert
A
,
Iacoboni
G
, et al
.
Safety and feasibility of stem cell boost as a salvage therapy for severe hematotoxicity after CD19 CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
16
):
4719
-
4725
.
55.
Benjamin
R
,
Graham
C
,
Yallop
D
, et al
.
Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies
.
Lancet
.
2020
;
396
(
10266
):
1885
-
1894
.
56.
Jain
T
,
Olson
TS
,
Locke
FL
.
How I treat cytopenias after CAR T-cell therapy
.
Blood
.
2023
;
141
(
20
):
2460
-
2469
.
57.
Logue
JM
,
Peres
LC
,
Hashmi
H
, et al
.
Early cytopenias and infections after standard of care idecabtagene vicleucel in relapsed or refractory multiple myeloma
.
Blood Adv
.
2022
;
6
(
24
):
6109
-
6119
.
58.
Gagelmann
N
,
Wulf
GG
,
Duell
J
, et al
.
Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: a GLA/DRST study
.
Blood Adv
.
2023
;
7
(
4
):
555
-
559
.
59.
Lim
SH
,
Hong
JY
,
Lim
ST
, et al
.
Beyond first-line non-anthracycline-based chemotherapy for extranodal NK/T-cell lymphoma: clinical outcome and current perspectives on salvage therapy for patients after first relapse and progression of disease
.
Ann Oncol
.
2017
;
28
(
9
):
2199
-
2205
.
60.
Yoon
SE
,
Song
Y
,
Kim
SJ
, et al
.
Comprehensive analysis of peripheral T-cell and natural killer/T-cell lymphoma in Asian patients: a multinational, multicenter, prospective registry study in Asia
.
Lancet Reg Health West Pac
.
2021
;
10
:
100126
.
61.
Berning
P
,
Schmitz
N
,
Ngoya
M
, et al
.
Allogeneic hematopoietic stem cell transplantation for NK/T-cell lymphoma: an international collaborative analysis
.
Leukemia
.
2023
;
37
(
7
):
1511
-
1520
.
62.
Zhang
Q
,
Han
Q
,
Zi
J
,
Song
C
,
Ge
Z
.
CD37 high expression as a potential biomarker and association with poor outcome in acute myeloid leukemia
.
Biosci Rep
.
2020
;
40
(
5
). BSR20200008.
63.
Shimony
S
,
Stahl
M
,
Stone
RM
.
Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management
.
Am J Hematol
.
2023
;
98
(
3
):
502
-
526
.
64.
Wang
L
,
Hong
R
,
Zhou
L
, et al
.
New-onset severe cytopenia after CAR-T cell therapy: analysis of 76 patients with relapsed or refractory acute lymphoblastic leukemia
.
Front Oncol
.
2021
;
11
:
702644
.
65.
Juluri
KR
,
Wu
QV
,
Voutsinas
J
, et al
.
Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy
.
Blood Adv
.
2022
;
6
(
7
):
2055
-
2068
.
66.
Li
X
,
Deng
Q
,
Henderson
J
, et al
.
Targetable cellular etiology of prolonged cytopenia following CD19 CAR T-cell therapy
.
Blood
.
2022
;
140
(
suppl 1
):
4502
-
4503
.
67.
Kitamura
W
,
Asada
N
,
Naoi
Y
, et al
.
Bone marrow microenvironment disruption and sustained inflammation with prolonged haematologic toxicity after CAR T-cell therapy
.
Br J Haematol
.
2023
;
202
(
2
):
294
-
307
.
68.
Haubner
S
,
Mansilla-Soto
J
,
Nataraj
S
, et al
.
Cooperative CAR targeting to selectively eliminate AML and minimize escape
.
Cancer Cell
.
2023
;
41
(
11
):
1871
-
1891.e6
.
69.
Lichtenstein
DA
,
Schischlik
F
,
Shao
L
, et al
.
Characterization of HLH-like manifestations as a CRS variant in patients receiving CD22 CAR T cells
.
Blood
.
2021
;
138
(
24
):
2469
-
2484
.
70.
Hines
MR
,
Keenan
C
,
Maron Alfaro
G
, et al
.
Hemophagocytic lymphohistiocytosis-like toxicity (carHLH) after CD19-specific CAR T-cell therapy
.
Br J Haematol
.
2021
;
194
(
4
):
701
-
707
.
71.
Kennedy
VE
,
Wong
C
,
Huang
CY
, et al
.
Macrophage activation syndrome-like (MAS-L) manifestations following BCMA-directed CAR T cells in multiple myeloma
.
Blood Adv
.
2021
;
5
(
23
):
5344
-
5348
.
72.
Svoboda
J
,
Gerson
JN
,
Landsburg
DJ
, et al
.
Interleukin-18 secreting autologous anti-CD19 CAR T-cells (huCART19-IL18) in patients with non-Hodgkin lymphomas relapsed or refractory to prior CAR T-cell therapy
.
Blood
.
2022
;
140
(
suppl 1
):
4612
-
4614
.
73.
Del Bufalo
F
,
De Angelis
B
,
Caruana
I
, et al
.
GD2-CART01 for relapsed or refractory high-risk neuroblastoma
.
N Engl J Med
.
2023
;
388
(
14
):
1284
-
1295
.
74.
Graham
CE
,
Lee
WH
,
Wiggin
HR
, et al
.
Chemotherapy-induced reversal of ciltacabtagene autoleucel-associated movement and neurocognitive toxicity
.
Blood
.
2023
;
142
(
14
):
1248
-
1252
.
75.
Bast
E
,
Tang
F
,
Dahn
J
,
Palacio
A
.
Increased risk of hospitalisation and death with the delta variant in the USA
.
Lancet Infect Dis
.
2021
;
21
(
12
):
1629
-
1630
.
76.
Vijenthira
A
,
Gong
IY
,
Fox
TA
, et al
.
Outcomes of patients with hematologic malignancies and COVID-19: a systematic review and meta-analysis of 3377 patients
.
Blood
.
2020
;
136
(
25
):
2881
-
2892
.
77.
Spanjaart
AM
,
Ljungman
P
,
de La Camara
R
, et al
.
Poor outcome of patients with COVID-19 after CAR T-cell therapy for B-cell malignancies: results of a multicenter study on behalf of the European Society for Blood and Marrow Transplantation (EBMT) Infectious Diseases Working Party and the European Hematology Association (EHA) Lymphoma Group
.
Leukemia
.
2021
;
35
(
12
):
3585
-
3588
.
78.
Sharma
A
,
Bhatt
NS
,
St Martin
A
, et al
.
Clinical characteristics and outcomes of COVID-19 in haematopoietic stem-cell transplantation recipients: an observational cohort study
.
Lancet Haematol
.
2021
;
8
(
3
):
e185
-
e193
.
You do not currently have access to this content.
Sign in via your Institution