• The adrenal gland can be hormonally induced to host serially transplantable HSPCs in adult mice.

  • Adrenal extramedullary hematopoiesis is associated to the formation of PDGFRα+LEPR+/− foci in mice and CXCL12+FOXC1+ stroma in humans.

Abstract

Adult hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic niche, which regulates HSPC quiescence, self-renewal, and commitment in a demand-adapted manner. Although the complex BM niche is responsible for adult hematopoiesis, evidence exists for simpler, albeit functional and more accessible, extramedullary hematopoietic niches. Inspired by the anecdotal description of retroperitoneal hematopoietic masses occurring at higher frequency upon hormonal dysregulation within the adrenal gland, we hypothesized that the adult adrenal gland could be induced into a hematopoietic-supportive environment in a systematic manner, thus revealing mechanisms underlying de novo niche formation in the adult. Here, we show that upon splenectomy and hormonal stimulation, the adult adrenal gland of mice can be induced to recruit and host functional HSPCs, capable of serial transplantation, and that this phenomenon is associated with de novo formation of platelet-derived growth factor receptor α/leptin receptor (PDGFRα+/LEPR+/–)–expressing stromal nodules. We further show in CXCL12–green fluorescent protein reporter mice that adrenal glands contain a stromal population reminiscent of the CXCL12-abundant reticular cells, which compose the BM HSPC niche. Mechanistically, HSPC homing to hormonally induced adrenal glands was found dependent on the CXCR4–CXCL12 axis. Mirroring our findings in mice, we found reticular CXCL12+ cells coexpressing master niche regulator FOXC1 in primary samples from human adrenal myelolipomas, a benign tumor composed of adipose and hematopoietic tissue. Our findings reignite long-standing questions regarding hormonal regulation of hematopoiesis and provide a novel model to facilitate the study of adult-specific inducible hematopoietic niches, which may pave the way to therapeutic applications.

1.
Yamamoto
K
,
Miwa
Y
,
Abe-Suzuki
S
, et al
.
Extramedullary hematopoiesis: elucidating the function of the hematopoietic stem cell niche (review)
.
Mol Med Rep
.
2016
;
13
(
1
):
587
-
591
.
2.
Johns
JL
,
Christopher
MM
.
Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals
.
Vet Pathol
.
2012
;
49
(
3
):
508
-
523
.
3.
Palmer
WE
,
Gerard-McFarland
EL
,
Chew
FS
.
Adrenal myelolipoma
.
AJR Am J Roentgenol
.
1991
;
156
(
4
):
724
.
4.
Hisamud-din
N
,
Mustafah
NM
,
Fauzi
AA
,
Hashim
NM
.
Incomplete paraplegia caused by extramedullary hematopoiesis in a patient with thalassemia intermedia
.
Spinal Cord Ser Cases
.
2017
;
3
(
1
):
17020
.
5.
Nermoen
I
,
Rørvik
J
,
Holmedal
SH
, et al
.
High frequency of adrenal myelolipomas and testicular adrenal rest tumours in adult Norwegian patients with classical congenital adrenal hyperplasia because of 21-hydroxylase deficiency
.
Clin Endocrinol
.
2011
;
75
(
6
):
753
-
759
.
6.
Claahsen - Van Der Grinten
HL
,
Speiser
PW
,
Ahmed
SF
, et al
.
Congenital adrenal hyperplasia—current insights in pathophysiology, diagnostics, and management
.
Endocr Rev
.
2022
;
43
(
1
):
91
-
159
.
7.
Christopherson
KW
,
Hangoc
G
,
Mantel
CR
,
Broxmeyer
HE
.
Modulation of hematopoietic stem cell homing and engraftment by CD26
.
Science
.
2004
;
305
(
5686
):
1000
-
1003
.
8.
Nombela-Arrieta
C
,
Pivarnik
G
,
Winkel
B
, et al
.
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
.
Nat Cell Biol
.
2013
;
15
(
5
):
533
-
543
.
9.
Selye
H
,
Stone
H
.
Hormonally induced transformation of adrenal into myeloid tissue
.
Am J Pathol
.
1950
;
26
(
2
):
211
-
233
.
10.
Pivonello
R
,
De Martino
MC
,
De Leo
M
,
Simeoli
C
,
Colao
A
.
Cushing’s disease: the burden of illness
.
Endocrine
.
2017
;
56
(
1
):
10
-
18
.
11.
Mendt
M
,
Cardier
JE
.
Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ
.
Cytokine
.
2015
;
76
(
2
):
214
-
221
.
12.
Purton
LE
,
Scadden
DT
.
Limiting factors in murine hematopoietic stem cell assays
.
Cell Stem Cell
.
2007
;
1
(
3
):
263
-
270
.
13.
Coppin
E
,
Florentin
J
,
Vasamsetti
SB
, et al
.
Splenic hematopoietic stem cells display a pre-activated phenotype
.
Immunol Cell Biol
.
2018
;
96
(
7
):
772
-
784
.
14.
Oguro
H
,
Ding
L
,
Morrison
SJ
.
SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
.
Cell Stem Cell
.
2013
;
13
(
1
):
102
-
116
.
15.
Ottersbach
K
.
Endothelial-to-haematopoietic transition: an update on the process of making blood
.
Biochem Soc Trans
.
2019
;
47
(
2
):
591
-
601
.
16.
Greenbaum
A
,
Hsu
Y-MS
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
17.
Ara
T
,
Tokoyoda
K
,
Sugiyama
T
,
Egawa
T
,
Kawabata
K
,
Nagasawa
T
.
Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny
.
Immunity
.
2003
;
19
(
2
):
257
-
267
.
18.
Gomariz
A
,
Helbling
PM
,
Isringhausen
S
, et al
.
Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy
.
Nat Commun
.
2018
;
9
(
1
):
2532
.
19.
Bedoya-Reina
OC
,
Li
W
,
Arceo
M
, et al
.
Single-nuclei transcriptomes from human adrenal gland reveal distinct cellular identities of low and high-risk neuroblastoma tumors
.
Nat Commun
.
2021
;
12
(
1
):
5309
.
20.
Chandrakanthan
V
,
Rorimpandey
P
,
Zanini
F
, et al
.
Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta
.
Nat Cell Biol
.
2022
;
24
(
8
):
1211
-
1225
.
21.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
JG
,
Morrison
SJ
.
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
22.
Decmann
Á
,
Perge
P
,
Tóth
M
,
Igaz
P
.
Adrenal myelolipoma: a comprehensive review
.
Endocrine
.
2018
;
59
(
1
):
7
-
15
.
23.
Jais
X
,
Ioos
V
,
Jardim
C
, et al
.
Splenectomy and chronic thromboembolic pulmonary hypertension
.
Thorax
.
2005
;
60
(
12
):
1031
-
1034
.
24.
Tormin
A
,
Li
O
,
Brune
JC
, et al
.
CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization
.
Blood
.
2011
;
117
(
19
):
5067
-
5077
.
25.
Sacchetti
B
,
Funari
A
,
Michienzi
S
, et al
.
Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment
.
Cell
.
2007
;
131
(
2
):
324
-
336
.
26.
Méndez-Ferrer
S
,
Battista
M
,
Frenette
PS
.
Cooperation of β2- and β3-adrenergic receptors in hematopoietic progenitor cell mobilization: β-adrenoceptors in bone marrow microenvironment
.
Ann N Y Acad Sci
.
2010
;
1192
(
1
):
139
-
144
.
27.
Omatsu
Y
,
Seike
M
,
Sugiyama
T
,
Kume
T
,
Nagasawa
T
.
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
.
Nature
.
2014
;
508
(
7497
):
536
-
540
.
28.
Cao
J
,
O’Day
DR
,
Pliner
HA
, et al
.
A human cell atlas of fetal gene expression
.
Science
.
2020
;
370
(
6518
):
eaba7721
.
29.
Feng
C
,
Jiang
H
,
Ding
Q
,
Wen
H
.
Adrenal myelolipoma: a mingle of progenitor cells?
.
Med Hypotheses
.
2013
;
80
(
6
):
819
-
822
.
30.
Harousseau
JL
,
Witz
B
,
Lioure
B
, et al
.
Granulocyte colony-stimulating factor after intensive consolidation chemotherapy in acute myeloid leukemia: results of a randomized trial of the Groupe Ouest-Est Leucémies Aigues Myeloblastiques
.
J Clin Oncol
.
2000
;
18
(
4
):
780
-
787
.
31.
Godwin
JE
,
Kopecky
KJ
,
Head
DR
, et al
.
A double-blind placebo-controlled trial of granulocyte colony-stimulating factor in elderly patients with previously untreated acute myeloid leukemia: a Southwest Oncology Group Study (9031)
.
Blood
.
1998
;
91
(
10
):
3607
-
3615
.
32.
Bär
C
,
Huber
N
,
Beier
F
,
Blasco
MA
.
Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres
.
Haematologica
.
2015
;
100
(
10
):
1267
-
1274
.
33.
Townsley
DM
,
Dumitriu
B
,
Liu
D
, et al
.
Danazol treatment for telomere diseases
.
N Engl J Med
.
2016
;
374
(
20
):
1922
-
1931
.
34.
Català
A
,
Ali
SS
,
Cuvelier
GDE
, et al
.
Androgen therapy in inherited bone marrow failure syndromes: analysis from the Canadian inherited marrow failure registry
.
Br J Haematol
.
2020
;
189
(
5
):
976
-
981
.
35.
Kirschner
M
,
Vieri
M
,
Kricheldorf
K
, et al
.
Androgen derivatives improve blood counts and elongate telomere length in adult cryptic dyskeratosis congenita
.
Br J Haematol
.
2021
;
193
(
3
):
669
-
673
.
36.
Schubert
TEO
,
Obermaier
F
,
Ugocsai
P
, et al
.
Murine models of anaemia of inflammation: extramedullary haematopoiesis represents a species specific difference to human anaemia of inflammation that can be eliminated by splenectomy
.
Int J Immunopathol Pharmacol
.
2008
;
21
(
3
):
577
-
584
.
37.
Craft
CS
,
Scheller
EL
.
Evolution of the marrow adipose tissue microenvironment
.
Calcif Tissue Int
.
2017
;
100
(
5
):
461
-
475
.
You do not currently have access to this content.
Sign in via your Institution