Abstract

Acute myeloid leukemia (AML) remains a dismal disease with poor prognosis, particularly in the relapsed/refractory (R/R) setting. Chimeric antigen receptor (CAR) therapy has yielded remarkable clinical results in other leukemias and thus has, in principle, the potential to achieve similar outcomes in R/R AML. Redirecting the approved CD19-specific CAR designs against the myeloid antigens CD33, CD123, or CLEC12A has occasionally yielded morphologic leukemia-free states but has so far been marred by threatening myeloablation and early relapses. These safety and efficacy limitations are largely due to the challenge of identifying suitable target antigens and designing adequate receptors for effective recognition and safe elimination of AML. Building on lessons learned from the initial clinical attempts, a new wave of CAR strategies relying on alternative target antigens and innovative CAR designs is about to enter clinical evaluation. Adapted multiantigen targeting, logic gating, and emerging cell engineering solutions offer new possibilities to better direct T-cell specificity and sensitivity toward AML. Pharmacologic modulation and genetic epitope engineering may extend these approaches by augmenting target expression in AML cells or minimizing target expression in normal hematopoietic cells. On/off switches or CAR T-cell depletion may curb excessive or deleterious CAR activity. Investigation of AML-intrinsic resistance and leukemic microenvironmental factors is poised to reveal additional targetable AML vulnerabilities. We summarize here the findings, challenges, and new developments of CAR therapy for AML. These illustrate the need to specifically adapt CAR strategies to the complex biology of AML to achieve better therapeutic outcomes.

1.
DiNardo
CD
,
Erba
HP
,
Freeman
SD
,
Wei
AH
.
Acute myeloid leukaemia
.
Lancet
.
2023
;
401
(
10393
):
2073
-
2086
.
2.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
-
73
.
3.
Singh
N
,
Maus
MV
.
Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy
.
Immunity
.
2023
;
56
(
10
):
2296
-
2310
.
4.
Brentjens
RJ
,
Davila
ML
,
Riviere
I
, et al
.
CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia
.
Sci Transl Med
.
2013
;
5
(
177
):
177ra38
.
5.
Grupp
SA
,
Kalos
M
,
Barrett
D
, et al
.
Chimeric antigen receptor-modified T cells for acute lymphoid leukemia
.
N Engl J Med
.
2013
;
368
(
16
):
1509
-
1518
.
6.
Davila
ML
,
Riviere
I
,
Wang
X
, et al
.
Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
.
Sci Transl Med
.
2014
;
6
(
224
):
224ra25
.
7.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
8.
Park
JH
,
Riviere
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
9.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
10.
Shah
NN
,
Lee
DW
,
Yates
B
, et al
.
Long-term follow-up of CD19-CAR T-cell therapy in children and young adults with B-ALL
.
J Clin Oncol
.
2021
;
39
(
15
):
1650
-
1659
.
11.
Haubner
S
,
Mansilla-Soto
J
,
Nataraj
S
, et al
.
Cooperative CAR targeting to selectively eliminate AML and minimize escape
.
Cancer Cell
.
2023
;
41
(
11
):
1871
-
1891.e6
.
12.
Hernandez-Caselles
T
,
Martinez-Esparza
M
,
Perez-Oliva
AB
, et al
.
A study of CD33 (SIGLEC-3) antigen expression and function on activated human T and NK cells: two isoforms of CD33 are generated by alternative splicing
.
J Leukoc Biol
.
2006
;
79
(
1
):
46
-
58
.
13.
Perez-Oliva
AB
,
Martinez-Esparza
M
,
Vicente-Fernandez
JJ
,
Corral-San Miguel
R
,
Garcia-Penarrubia
P
,
Hernandez-Caselles
T
.
Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells
.
Glycobiology
.
2011
;
21
(
6
):
757
-
770
.
14.
Renner
K
,
Metz
S
,
Metzger
AM
, et al
.
Expression of IL-3 receptors and impact of IL-3 on human T and B cells
.
Cell Immunol
.
2018
;
334
:
49
-
60
.
15.
Sun
Y
,
Wang
S
,
Zhao
L
,
Zhang
B
,
Chen
H
.
IFN-gamma and TNF-alpha aggravate endothelial damage caused by CD123-targeted CAR T cell
.
Onco Targets Ther
.
2019
;
12
:
4907
-
4925
.
16.
Naik
S
,
Madden
RM
,
Lipsitt
A
, et al
.
Safety and anti-leukemic activity of CD123-CAR T cells in pediatric patients with AML: preliminary results from a phase 1 trial [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
4584
-
4585
.
17.
Korpelainen
EI
,
Gamble
JR
,
Smith
WB
, et al
.
The receptor for interleukin 3 is selectively induced in human endothelial cells by tumor necrosis factor alpha and potentiates interleukin 8 secretion and neutrophil transmigration
.
Proc Natl Acad Sci U S A
.
1993
;
90
(
23
):
11137
-
11141
.
18.
Richards
RM
,
Zhao
F
,
Freitas
KA
, et al
.
NOT-gated CD93 CAR T cells effectively target AML with minimized endothelial cross-reactivity
.
Blood Cancer Discov
.
2021
;
2
(
6
):
648
-
665
.
19.
Chang
G-W
,
Davies
JQ
,
Stacey
M
, et al
.
CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells
.
Biochem Biophys Res Commun
.
2007
;
353
(
1
):
133
-
138
.
20.
Yona
S
,
Lin
HH
,
Dri
P
, et al
.
Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function
.
FASEB J
.
2008
;
22
(
3
):
741
-
751
.
21.
Macauley
MS
,
Crocker
PR
,
Paulson
JC
.
Siglec-mediated regulation of immune cell function in disease
.
Nat Rev Immunol
.
2014
;
14
(
10
):
653
-
666
.
22.
Son
M
,
Diamond
B
,
Volpe
BT
,
Aranow
CB
,
Mackay
MC
,
Santiago-Schwarz
F
.
Evidence for C1q-mediated crosslinking of CD33/LAIR-1 inhibitory immunoreceptors and biological control of CD33/LAIR-1 expression
.
Sci Rep
.
2017
;
7
(
1
):
270
.
23.
Taussig
DC
,
Pearce
DJ
,
Simpson
C
, et al
.
Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia
.
Blood
.
2005
;
106
(
13
):
4086
-
4092
.
24.
Ehninger
A
,
Kramer
M
,
Rollig
C
, et al
.
Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia
.
Blood Cancer J
.
2014
;
4
(
6
):
e218
.
25.
Krupka
C
,
Kufer
P
,
Kischel
R
, et al
.
CD33 target validation and sustained depletion of AML blasts in long-term cultures by the bispecific T-cell-engaging antibody AMG 330
.
Blood
.
2014
;
123
(
3
):
356
-
365
.
26.
Willier
S
,
Rothamel
P
,
Hastreiter
M
, et al
.
CLEC12A and CD33 coexpression as a preferential target for pediatric AML combinatorial immunotherapy
.
Blood
.
2021
;
137
(
8
):
1037
-
1049
.
27.
Haubner
S
,
Perna
F
,
Kohnke
T
, et al
.
Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML
.
Leukemia
.
2019
;
33
(
1
):
64
-
74
.
28.
Hejazi
M
,
Zhang
C
,
Bennstein
SB
, et al
.
CD33 delineates two functionally distinct NK cell populations divergent in cytokine production and antibody-mediated cellular cytotoxicity
.
Front Immunol
.
2021
;
12
:
798087
.
29.
Zheng
W
,
O'Hear
CE
,
Alli
R
, et al
.
PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells
.
Leukemia
.
2018
;
32
(
5
):
1157
-
1167
.
30.
Finney
HM
,
Lawson
AD
,
Bebbington
CR
,
Weir
AN
.
Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product
.
J Immunol
.
1998
;
161
(
6
):
2791
-
2797
.
31.
Marin
V
,
Pizzitola
I
,
Agostoni
V
, et al
.
Cytokine-induced killer cells for cell therapy of acute myeloid leukemia: improvement of their immune activity by expression of CD33-specific chimeric receptors
.
Haematologica
.
2010
;
95
(
12
):
2144
-
2152
.
32.
Dutour
A
,
Marin
V
,
Pizzitola
I
, et al
.
In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia
.
Adv Hematol
.
2012
;
2012
:
683065
.
33.
Pizzitola
I
,
Anjos-Afonso
F
,
Rouault-Pierre
K
, et al
.
Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo
.
Leukemia
.
2014
;
28
(
8
):
1596
-
1605
.
34.
Kenderian
SS
,
Ruella
M
,
Shestova
O
, et al
.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1637
-
1647
.
35.
O'Hear
C
,
Heiber
JF
,
Schubert
I
,
Fey
G
,
Geiger
TL
.
Anti-CD33 chimeric antigen receptor targeting of acute myeloid leukemia
.
Haematologica
.
2015
;
100
(
3
):
336
-
344
.
36.
Kim
MY
,
Yu
KR
,
Kenderian
SS
, et al
.
Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia
.
Cell
.
2018
;
173
(
6
):
1439
-
1453.e19
.
37.
Borot
F
,
Wang
H
,
Ma
Y
, et al
.
Gene-edited stem cells enable CD33-directed immune therapy for myeloid malignancies
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
24
):
11978
-
11987
.
38.
Laszlo
GS
,
Harrington
KH
,
Gudgeon
CJ
, et al
.
Expression and functional characterization of CD33 transcript variants in human acute myeloid leukemia
.
Oncotarget
.
2016
;
7
(
28
):
43281
-
43294
.
39.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
40.
Godwin
CD
,
Laszlo
GS
,
Fiorenza
S
, et al
.
Targeting the membrane-proximal C2-set domain of CD33 for improved CD33-directed immunotherapy
.
Leukemia
.
2021
;
35
(
9
):
2496
-
2507
.
41.
Fiorenza
S
,
Lim
SYT
,
Laszlo
GS
, et al
.
Targeting the membrane-proximal C2-set domain of CD33 for improved CAR T cell therapy
.
Mol Ther Oncol
.
2024
;
32
(
3
):
200854
.
42.
Freeman
R
,
Shahid
S
,
Khan
AG
, et al
.
Developing a membrane-proximal CD33-targeting CAR T cell
.
J Immunother Cancer
.
2024
;
12
(
5
):
e009013
.
43.
Wang
QS
,
Wang
Y
,
Lv
HY
, et al
.
Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia
.
Mol Ther
.
2015
;
23
(
1
):
184
-
191
.
44.
Shah
NN
,
Tasian
SK
,
Kohler
ME
, et al
.
CD33 CAR T-Cells (CD33CART) for children and young adults with relapsed/refractory AML: dose-escalation results from a phase I/II multicenter trial [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
771
.
45.
Tambaro
FP
,
Singh
H
,
Jones
E
, et al
.
Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia
.
Leukemia
.
2021
;
35
(
11
):
3282
-
3286
.
46.
Broughton
SE
,
Dhagat
U
,
Hercus
TR
, et al
.
The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling
.
Immunol Rev
.
2012
;
250
(
1
):
277
-
302
.
47.
Jordan
CT
,
Upchurch
D
,
Szilvassy
SJ
, et al
.
The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells
.
Leukemia
.
2000
;
14
(
10
):
1777
-
1784
.
48.
Munoz
L
,
Nomdedeu
JF
,
Lopez
O
, et al
.
Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies
.
Haematologica
.
2001
;
86
(
12
):
1261
-
1269
.
49.
Testa
U
,
Riccioni
R
,
Militi
S
, et al
.
Elevated expression of IL-3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis
.
Blood
.
2002
;
100
(
8
):
2980
-
2988
.
50.
Wittwer
NL
,
Brumatti
G
,
Marchant
C
, et al
.
High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression
.
Blood Adv
.
2017
;
1
(
15
):
1067
-
1079
.
51.
Tettamanti
S
,
Marin
V
,
Pizzitola
I
, et al
.
Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor
.
Br J Haematol
.
2013
;
161
(
3
):
389
-
401
.
52.
Mardiros
A
,
Dos Santos
C
,
McDonald
T
, et al
.
T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia
.
Blood
.
2013
;
122
(
18
):
3138
-
3148
.
53.
Gill
S
,
Tasian
SK
,
Ruella
M
, et al
.
Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells
.
Blood
.
2014
;
123
(
15
):
2343
-
2354
.
54.
Baroni
ML
,
Sanchez Martinez
D
,
Gutierrez Aguera
F
, et al
.
41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo
.
J Immunother Cancer
.
2020
;
8
(
1
):
e000845
.
55.
Sugita
M
,
Galetto
R
,
Zong
H
, et al
.
Allogeneic TCRalphabeta deficient CAR T-cells targeting CD123 in acute myeloid leukemia
.
Nat Commun
.
2022
;
13
(
1
):
2227
.
56.
Budde
L
,
Song
JY
,
Kim
Y
, et al
.
Remissions of acute myeloid leukemia and blastic plasmacytoid dendritic cell neoplasm following treatment with CD123-specific CAR T cells: a first-in-human clinical trial [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
811
.
57.
Cummins
KD
,
Frey
N
,
Nelson
AM
, et al
.
Treating relapsed/refractory (RR) AML with biodegradable anti-CD123 CAR modified T cells [abstract]
.
Blood
.
2017
;
130
(
suppl 1
):
1359
.
58.
Bhagwat
AS
,
Torres
L
,
Shestova
O
, et al
.
Cytokine-mediated CAR T therapy resistance in AML
.
Nat Med
.
2024;30(12):3697-3708
.
59.
Sallman
DA
,
DeAngelo
DJ
,
Pemmaraju
N
, et al
.
Ameli-01: a phase I trial of UCART123v1.2, an anti-CD123 allogeneic CAR-T cell product, in adult patients with relapsed or refractory (R/R) CD123+ acute myeloid leukemia (AML) [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
2371
-
2373
.
60.
Marshall
ASJ
,
Willment
JA
,
Lin
H-H
,
Williams
DL
,
Gordon
S
,
Brown
GD
.
Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes
.
J Biol Chem
.
2004
;
279
(
15
):
14792
-
14802
.
61.
McLeish
KR
,
Fernandes
MJ
.
Understanding inhibitory receptor function in neutrophils through the lens of CLEC12A
.
Immunol Rev
.
2023
;
314
(
1
):
50
-
68
.
62.
Kawamura
S
,
Onai
N
,
Miya
F
, et al
.
Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs
.
Immunity
.
2017
;
46
(
5
):
835
-
848.e4
.
63.
Bill
M
,
B van Kooten Niekerk
P
,
S Woll
P
, et al
.
Mapping the CLEC12A expression on myeloid progenitors in normal bone marrow; implications for understanding CLEC12A-related cancer stem cell biology
.
J Cell Mol Med
.
2018
;
22
(
4
):
2311
-
2318
.
64.
Bakker
AB
,
van den Oudenrijn
S
,
Bakker
AQ
, et al
.
C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia
.
Cancer Res
.
2004
;
64
(
22
):
8443
-
8450
.
65.
van Rhenen
A
,
van Dongen
GA
,
Kelder
A
, et al
.
The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells
.
Blood
.
2007
;
110
(
7
):
2659
-
2666
.
66.
Morsink
LM
,
Walter
RB
,
Ossenkoppele
GJ
.
Prognostic and therapeutic role of CLEC12A in acute myeloid leukemia
.
Blood Rev
.
2019
;
34
:
26
-
33
.
67.
Laborda
E
,
Mazagova
M
,
Shao
S
, et al
.
Development of a chimeric antigen receptor targeting C-type lectin-like molecule-1 for human acute myeloid leukemia
.
Int J Mol Sci
.
2017
;
18
(
11
):
2259
.
68.
Tashiro
H
,
Sauer
T
,
Shum
T
, et al
.
Treatment of acute myeloid leukemia with T cells expressing chimeric antigen receptors directed to C-type lectin-like molecule 1
.
Mol Ther
.
2017
;
25
(
9
):
2202
-
2213
.
69.
Wang
J
,
Chen
S
,
Xiao
W
, et al
.
CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia
.
J Hematol Oncol
.
2018
;
11
(
1
):
7
.
70.
Ataca Atilla
P
,
McKenna
MK
,
Tashiro
H
, et al
.
Modulating TNFalpha activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia
.
J Immunother Cancer
.
2020
;
8
(
2
):
e001229
.
71.
Majzner
RG
,
Rietberg
SP
,
Sotillo
E
, et al
.
Tuning the antigen density requirement for CAR T-cell activity
.
Cancer Discov
.
2020
;
10
(
5
):
702
-
723
.
72.
Mansilla-Soto
J
,
Eyquem
J
,
Haubner
S
, et al
.
HLA-independent T cell receptors for targeting tumors with low antigen density
.
Nat Med
.
2022
;
28
(
2
):
345
-
352
.
73.
Zhao
Y
,
Zhang
X
,
Zhang
M
, et al
.
Modified EASIX scores predict severe CRS/ICANS in patients with acute myeloid leukemia following CLL1 CAR-T cell therapy
.
Ann Hematol
.
2024
;
103
(
3
):
969
-
980
.
74.
Zhang
H
,
Bu
C
,
Peng
Z
, et al
.
Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: the multi-center efficacy and safety interim analysis
.
Leukemia
.
2022
;
36
(
11
):
2596
-
2604
.
75.
Pei
K
,
Xu
H
,
Wang
P
, et al
.
Anti-CLL1-based CAR T-cells with 4-1-BB or CD28/CD27 stimulatory domains in treating childhood refractory/relapsed acute myeloid leukemia
.
Cancer Med
.
2023
;
12
(
8
):
9655
-
9661
.
76.
Ma
YJ
,
Dai
HP
,
Cui
QY
, et al
.
Successful application of PD-1 knockdown CLL-1 CAR-T therapy in two AML patients with post-transplant relapse and failure of anti-CD38 CAR-T cell treatment
.
Am J Cancer Res
.
2022
;
12
(
2
):
615
-
621
.
77.
Miao
X
,
Shuai
Y
,
Han
Y
, et al
.
Case report: donor-derived CLL-1 chimeric antigen receptor T-cell therapy for relapsed/refractory acute myeloid leukemia bridging to allogeneic hematopoietic stem cell transplantation after remission
.
Front Immunol
.
2024
;
15
:
1389227
.
78.
Perna
F
,
Berman
SH
,
Soni
RK
, et al
.
Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML
.
Cancer Cell
.
2017
;
32
(
4
):
506
-
519.e5
.
79.
Lin
HH
,
Stacey
M
,
Hamann
J
,
Gordon
S
,
McKnight
AJ
.
Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97
.
Genomics
.
2000
;
67
(
2
):
188
-
200
.
80.
Stacey
M
,
Chang
GW
,
Davies
JQ
, et al
.
The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans
.
Blood
.
2003
;
102
(
8
):
2916
-
2924
.
81.
Shahswar
R
,
Kloos
A
,
Gabdoulline
R
, et al
.
Frequency and clinical characteristics associated with putative CAR Targets ADGRE2, CCR1, CD70, and LILRB2 in acute myeloid leukemia [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
5259
.
82.
Yang
J
,
Wu
S
,
Alachkar
H
.
Characterization of upregulated adhesion GPCRs in acute myeloid leukemia
.
Transl Res
.
2019
;
212
:
26
-
35
.
83.
Halfond
A
,
Ung
M
,
Etchin
J
, et al
.
Multimodal atlas of paired diagnosis and relapse AML samples enables novel therapeutic targeting of surface antigens [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
164
.
84.
Huang
D
,
Yu
Z
,
Lu
H
, et al
.
Adhesion GPCR ADGRE2 maintains proteostasis to promote progression in acute myeloid leukemia
.
Cancer Res
.
2024
;
84
(
13
):
2090
-
2108
.
85.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT Consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
86.
Morris
EC
,
Neelapu
SS
,
Giavridis
T
,
Sadelain
M
.
Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy
.
Nat Rev Immunol
.
2022
;
22
(
2
):
85
-
96
.
87.
Hines
MR
,
Knight
TE
,
McNerney
KO
, et al
.
Immune efector cell-associated hemophagocytic lymphohistiocytosis-like syndrome
.
Transplant Cell Ther
.
2023
;
29
(
7
):
438.e1
-
438.e16
.
88.
Rejeski
K
,
Subklewe
M
,
Aljurf
M
, et al
.
Immune effector cell-associated hematotoxicity (ICAHT): EHA/EBMT Consensus grading and best practice recommendations
.
Blood
.
2023
;
142
(
10
):
865
-
877
.
89.
Rubino
V
,
Hüppi
M
,
Höpner
S
, et al
.
IL-21/IL-21R signaling renders acute myeloid leukemia stem cells more susceptible to cytarabine treatment and CAR T cell therapy
.
Cell Rep Med
.
2024
;
5
(
11
):
101826
.
90.
Delwel
R
,
Buitenen
Cv
,
Salem
M
, et al
.
Interleukin-1 stimulates proliferation of acute myeloblasts leukemia cells by induction of granulocyte-macrophage colony-stimulating factor release
.
Blood
.
1989
;
74
(
2
):
586
-
593
.
91.
Turzanski
J
,
Grundy
M
,
Russell
NH
,
Pallis
M
.
Interleukin-1β maintains an apoptosis-resistant phenotype in the blast cells of acute myeloid leukaemia via multiple pathways
.
Leukemia
.
2004
;
18
(
10
):
1662
-
1670
.
92.
Carey
A
,
Edwards
DKt
,
Eide
CA
, et al
.
Identification of interleukin-1 by functional screening as a key mediator of cellular expansion and disease progression in acute myeloid leukemia
.
Cell Rep
.
2017
;
18
(
13
):
3204
-
3218
.
93.
Yeaton
A
,
Cayanan
G
,
Loghavi
S
, et al
.
The impact of inflammation-induced tumor plasticity during myeloid transformation
.
Cancer Discov
.
2022
;
12
(
10
):
2392
-
2413
.
94.
Lasry
A
,
Nadorp
B
,
Fornerod
M
, et al
.
An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia
.
Nat Cancer
.
2023
;
4
(
1
):
27
-
42
.
95.
Radpour
R
,
Simillion
C
,
Wang
B
,
Abbas
HA
,
Riether
C
,
Ochsenbein
AF
.
IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion
.
Blood
.
2024
;
144
(
8
):
888
-
903
.
96.
Corradi
G
,
Bassani
B
,
Simonetti
G
, et al
.
Release of IFNgamma by acute myeloid leukemia cells remodels bone marrow immune microenvironment by inducing regulatory T cells
.
Clin Cancer Res
.
2022
;
28
(
14
):
3141
-
3155
.
97.
Towers
R
,
Trombello
L
,
Fusenig
M
, et al
.
Bone marrow-derived mesenchymal stromal cells obstruct AML-targeting CD8(+) clonal effector and CAR T-cell function while promoting a senescence-associated phenotype
.
Cancer Immunol Immunother
.
2024
;
73
(
1
):
8
.
98.
Mueller
J
,
Schimmer
RR
,
Koch
C
, et al
.
Targeting the mevalonate or Wnt pathways to overcome CAR T-cell resistance in TP53-mutant AML cells
.
EMBO Mol Med
.
2024
;
16
(
3
):
445
-
474
.
99.
Sauer
T
,
Parikh
K
,
Sharma
S
, et al
.
CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity
.
Blood
.
2021
;
138
(
4
):
318
-
330
.
100.
Leick
MB
,
Silva
H
,
Scarfo
I
, et al
.
Non-cleavable hinge enhances avidity and expansion of CAR-T cells for acute myeloid leukemia
.
Cancer Cell
.
2022
;
40
(
5
):
494
-
508.e5
.
101.
Cheng
J
,
Ge
T
,
Zhu
X
, et al
.
Preclinical development and evaluation of nanobody-based CD70-specific CAR T cells for the treatment of acute myeloid leukemia
.
Cancer Immunol Immunother
.
2023
;
72
(
7
):
2331
-
2346
.
102.
Wu
G
,
Guo
S
,
Luo
Q
, et al
.
Preclinical evaluation of CD70-specific CAR T cells targeting acute myeloid leukemia
.
Front Immunol
.
2023
;
14
:
1093750
.
103.
Warda
W
,
Da Rocha
MN
,
Trad
R
, et al
.
Overcoming target epitope masking resistance that can occur on low-antigen-expresser AML blasts after IL-1RAP chimeric antigen receptor T cell therapy using the inducible caspase 9 suicide gene safety switch
.
Cancer Gene Ther
.
2021
;
28
(
12
):
1365
-
1375
.
104.
Trad
R
,
Warda
W
,
Alcazer
V
, et al
.
Chimeric antigen receptor T-cells targeting IL-1RAP: a promising new cellular immunotherapy to treat acute myeloid leukemia
.
J Immunother Cancer
.
2022
;
10
(
7
):
e004222
.
105.
Hebbar
N
,
Epperly
R
,
Vaidya
A
, et al
.
CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells
.
Nat Commun
.
2022
;
13
(
1
):
587
.
106.
Yu
W
,
Zhang
H
,
Yuan
Y
, et al
.
Chimeric antigen receptor T cells targeting cell surface GRP78 to eradicate acute myeloid leukemia
.
Front Cell Dev Biol
.
2022
;
10
:
928140
.
107.
Zoine
JT
,
Immadisetty
K
,
Ibanez-Vega
J
, et al
.
Peptide-scFv antigen recognition domains effectively confer CAR T cell multiantigen specificity
.
Cell Rep Med
.
2024
;
5
(
2
):
101422
.
108.
Jetani
H
,
Navarro-Bailon
A
,
Maucher
M
, et al
.
Siglec-6 is a novel target for CAR T-cell therapy in acute myeloid leukemia
.
Blood
.
2021
;
138
(
19
):
1830
-
1842
.
109.
Hu
Y
,
Zhang
M
,
Yang
T
, et al
.
Sequential CD7 CAR T-cell therapy and allogeneic HSCT without GVHD prophylaxis
.
N Engl J Med
.
2024
;
390
(
16
):
1467
-
1480
.
110.
Riether
C
,
Schurch
CM
,
Buhrer
ED
, et al
.
CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia
.
J Exp Med
.
2017
;
214
(
2
):
359
-
380
.
111.
Petrov
JC
,
Wada
M
,
Pinz
KG
, et al
.
Compound CAR T-cells as a double-pronged approach for treating acute myeloid leukemia
.
Leukemia
.
2018
;
32
(
6
):
1317
-
1326
.
112.
Xie
D
,
Jin
X
,
Sun
R
, et al
.
Bicistronic CAR-T cells targeting CD123 and CLL1 for AML to reduce the risk of antigen escape
.
Transl Oncol
.
2023
;
34
:
101695
.
113.
Teppert
K
,
Yonezawa Ogusuku
IE
,
Brandes
C
, et al
.
CAR’TCR-T cells co-expressing CD33-CAR and dNPM1-TCR as superior dual-targeting approach for AML treatment
.
Mol Ther Oncol
.
2024
;
32
(
2
):
200797
.
114.
Wang
XY
,
Bian
MR
,
Lin
GQ
,
Yu
L
,
Zhang
YM
,
Wu
DP
.
Tandem bispecific CD123/CLL-1 CAR-T cells exhibit specific cytolytic effector functions against human acute myeloid leukaemia
.
Eur J Haematol
.
2024
;
112
(
1
):
83
-
93
.
115.
James
SE
,
Chen
S
,
Ng
BD
, et al
.
Leucine zipper-based immunomagnetic purification of CAR T cells displaying multiple receptors
.
Nat Biomed Eng
.
2024
;
8
(
12
):
1592
-
1614
.
116.
Haubner
S
,
Mansilla-Soto
J
,
Nataraj
S
, et al
.
“IF-Better” gating: combinatorial targeting and synergistic signaling for enhanced CAR T cell efficacy [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
2774
.
117.
Katsarou
A
,
Sjostrand
M
,
Naik
J
, et al
.
Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence
.
Sci Transl Med
.
2021
;
13
(
623
):
eabh1962
.
118.
He
X
,
Feng
Z
,
Ma
J
, et al
.
Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia
.
Blood
.
2020
;
135
(
10
):
713
-
723
.
119.
Perriello
VM
,
Rotiroti
MC
,
Pisani
I
, et al
.
IL3-zetakine combined with a CD33 costimulatory receptor as a dual CAR approach for safer and selective targeting of AML
.
Blood Adv
.
2023
;
7
(
12
):
2855
-
2871
.
120.
Boucher
JC
,
Shrestha
B
,
Vishwasrao
P
, et al
.
Bispecific CD33/CD123 targeted chimeric antigen receptor T cells for the treatment of acute myeloid leukemia
.
Mol Ther Oncolytics
.
2023
;
31
:
100751
.
121.
Dao
T
,
Xiong
G
,
Mun
SS
, et al
.
A dual-receptor T-cell platform with Ab-TCR and costimulatory receptor achieves specificity and potency against AML
.
Blood
.
2024
;
143
(
6
):
507
-
521
.
122.
Mandal
K
,
Wicaksono
G
,
Yu
C
, et al
.
Structural surfaceomics reveals an AML-specific conformation of integrin beta(2) as a CAR T cellular therapy target
.
Nat Cancer
.
2023
;
4
(
11
):
1592
-
1609
.
123.
Tousley
AM
,
Rotiroti
MC
,
Labanieh
L
, et al
.
Co-opting signalling molecules enables logic-gated control of CAR T cells
.
Nature
.
2023
;
615
(
7952
):
507
-
516
.
124.
Fedorov
VD
,
Themeli
M
,
Sadelain
M
.
PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses
.
Sci Transl Med
.
2013
;
5
(
215
):
215ra172
.
125.
Fei
F
,
Rong
L
,
Jiang
N
,
Wayne
AS
,
Xie
J
.
Targeting HLA-DR loss in hematologic malignancies with an inhibitory chimeric antigen receptor
.
Mol Ther
.
2022
;
30
(
3
):
1215
-
1226
.
126.
Frankel
NW
,
Deng
H
,
Yucel
G
, et al
.
Precision off-the-shelf natural killer cell therapies for oncology with logic-gated gene circuits
.
Cell Rep
.
2024
;
43
(
5
):
114145
.
127.
Choe
JH
,
Watchmaker
PB
,
Simic
MS
, et al
.
SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma
.
Sci Transl Med
.
2021
;
13
(
591
):
eabe7378
.
128.
Hyrenius-Wittsten
A
,
Su
Y
,
Park
M
, et al
.
SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models
.
Sci Transl Med
.
2021
;
13
(
591
):
eabd8836
.
129.
Cartellieri
M
,
Feldmann
A
,
Koristka
S
, et al
.
Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts
.
Blood Cancer J
.
2016
;
6
(
8
):
e458
.
130.
Loff
S
,
Dietrich
J
,
Meyer
JE
, et al
.
Rapidly switchable universal CAR-T cells for treatment of CD123-positive leukemia
.
Mol Ther Oncolytics
.
2020
;
17
:
408
-
420
.
131.
Benmebarek
MR
,
Cadilha
BL
,
Herrmann
M
, et al
.
A modular and controllable T cell therapy platform for acute myeloid leukemia
.
Leukemia
.
2021
;
35
(
8
):
2243
-
2257
.
132.
Atar
D
,
Ruoff
L
,
Mast
AS
, et al
.
Rational combinatorial targeting by adapter CAR-T-cells (AdCAR-T) prevents antigen escape in acute myeloid leukemia
.
Leukemia
.
2024
;
38
(
10
):
2183
-
2195
.
133.
Volta
L
,
Myburgh
R
,
Pellegrino
C
, et al
.
Efficient combinatorial adaptor-mediated targeting of acute myeloid leukemia with CAR T-cells
.
Leukemia
.
2024
;
38
(
12
):
2598
-
2613
.
134.
Seitz
CM
,
Mittelstaet
J
,
Atar
D
, et al
.
Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting
.
Oncoimmunology
.
2021
;
10
(
1
):
2003532
.
135.
Nixdorf
D
,
Sponheimer
M
,
Berghammer
D
, et al
.
Adapter CAR T cells to counteract T-cell exhaustion and enable flexible targeting in AML
.
Leukemia
.
2023
;
37
(
6
):
1298
-
1310
.
136.
Wermke
M
,
Kraus
S
,
Ehninger
A
, et al
.
Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML
.
Blood
.
2021
;
137
(
22
):
3145
-
3148
.
137.
Wermke
M
,
Metzelder
S
,
Kraus
S
, et al
.
Updated results from a phase I dose escalation study of the rapidly-switchable universal CAR-T therapy UniCAR-T-CD123 in relapsed/refractory AML [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
3465
.
138.
Riether
C
,
Pabst
T
,
Hopner
S
, et al
.
Targeting CD70 with cusatuzumab eliminates acute myeloid leukemia stem cells in patients treated with hypomethylating agents
.
Nat Med
.
2020
;
26
(
9
):
1459
-
1467
.
139.
Marques-Piubelli
ML
,
Kumar
B
,
Basar
R
, et al
.
Increased expression of CD70 in relapsed acute myeloid leukemia after hypomethylating agents
.
Virchows Arch
.
2024
;
485
(
5
):
937
-
941
.
140.
You
L
,
Han
Q
,
Zhu
L
, et al
.
Decitabine-mediated epigenetic reprograming enhances anti-leukemia efficacy of CD123-targeted chimeric antigen receptor T-cells
.
Front Immunol
.
2020
;
11
:
1787
.
141.
El Khawanky
N
,
Hughes
A
,
Yu
W
, et al
.
Demethylating therapy increases anti-CD123 CAR T cell cytotoxicity against acute myeloid leukemia
.
Nat Commun
.
2021
;
12
(
1
):
6436
.
142.
Tang
L
,
Kong
Y
,
Wang
H
, et al
.
Demethylating therapy increases cytotoxicity of CD44v6 CAR-T cells against acute myeloid leukemia
.
Front Immunol
.
2023
;
14
:
1145441
.
143.
Jetani
H
,
Garcia-Cadenas
I
,
Nerreter
T
, et al
.
CAR T-cells targeting FLT3 have potent activity against FLT3(-)ITD(+) AML and act synergistically with the FLT3-inhibitor crenolanib
.
Leukemia
.
2018
;
32
(
5
):
1168
-
1179
.
144.
Li
KX
,
Wu
HY
,
Pan
WY
, et al
.
A novel approach for relapsed/refractory FLT3(mut+) acute myeloid leukaemia: synergistic effect of the combination of bispecific FLT3scFv/NKG2D-CAR T cells and gilteritinib
.
Mol Cancer
.
2022
;
21
(
1
):
66
.
145.
Poggi
A
,
Catellani
S
,
Garuti
A
,
Pierri
I
,
Gobbi
M
,
Zocchi
MR
.
Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate
.
Leukemia
.
2009
;
23
(
4
):
641
-
648
.
146.
Driouk
L
,
Gicobi
JK
,
Kamihara
Y
, et al
.
Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia
.
Front Immunol
.
2020
;
11
:
580328
.
147.
Yoshida
T
,
Mihara
K
,
Takei
Y
, et al
.
All-trans retinoic acid enhances cytotoxic effect of T cells with an anti-CD38 chimeric antigen receptor in acute myeloid leukemia
.
Clin Transl Immunology
.
2016
;
5
(
12
):
e116
.
148.
Humbert
O
,
Laszlo
GS
,
Sichel
S
, et al
.
Engineering resistance to CD33-targeted immunotherapy in normal hematopoiesis by CRISPR/Cas9-deletion of CD33 exon 2
.
Leukemia
.
2019
;
33
(
3
):
762
-
808
.
149.
Liu
Y
,
Wang
S
,
Schubert
ML
, et al
.
CD33-directed immunotherapy with third-generation chimeric antigen receptor T cells and gemtuzumab ozogamicin in intact and CD33-edited acute myeloid leukemia and hematopoietic stem and progenitor cells
.
Int J Cancer
.
2022
;
150
(
7
):
1141
-
1155
.
150.
Wellhausen
N
,
O'Connell
RP
,
Lesch
S
, et al
.
Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy
.
Sci Transl Med
.
2023
;
15
(
714
):
eadi1145
.
151.
Marone
R
,
Landmann
E
,
Devaux
A
, et al
.
Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy
.
J Exp Med
.
2023
;
220
(
12
):
e20231235
.
152.
Casirati
G
,
Cosentino
A
,
Mucci
A
, et al
.
Epitope editing enables targeted immunotherapy of acute myeloid leukaemia
.
Nature
.
2023
;
621
(
7978
):
404
-
414
.
153.
Ji
RJ
,
Cao
GH
,
Zhao
WQ
, et al
.
Epitope prime editing shields hematopoietic cells from CD123 immunotherapy for acute myeloid leukemia
.
Cell Stem Cell
.
2024
;
31
(
11
):
1650
-
1666.e8
.
154.
DiPersio
J
,
Cooper
BW
,
Suh
HC
, et al
.
Trem-cel, a CRISPR/Cas9 gene-edited allograft lacking CD33, shows rapid primary engraftment with CD33-negative hematopoiesis in patients with high-risk acute myeloid leukemia (AML) and avoids hematopoietic toxicity during gemtuzumab ozogamicin (GO) maintenance post-hematopoietic cell transplant (HCT) [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
483
.
155.
Hopperton
KE
,
Mohammad
D
,
Trépanier
MO
,
Giuliano
V
,
Bazinet
RP
.
Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: a systematic review
.
Mol Psychiatry
.
2018
;
23
(
2
):
177
-
198
.
156.
Appelbaum
J
,
Price
AE
,
Oda
K
, et al
.
Drug-regulated CD33-targeted CAR T cells control AML using clinically optimized rapamycin dosing
.
J Clin Invest
.
2024
;
134
(
9
):
e162593
.
157.
Weber
EW
,
Lynn
RC
,
Sotillo
E
,
Lattin
J
,
Xu
P
,
Mackall
CL
.
Pharmacologic control of CAR-T cell function using dasatinib
.
Blood Adv
.
2019
;
3
(
5
):
711
-
717
.
158.
Mestermann
K
,
Giavridis
T
,
Weber
J
, et al
.
The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells
.
Sci Transl Med
.
2019
;
11
(
499
):
eaau5907
.
159.
Tasian
SK
,
Kenderian
SS
,
Shen
F
, et al
.
Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia
.
Blood
.
2017
;
129
(
17
):
2395
-
2407
.
160.
Sommer
C
,
Cheng
HY
,
Nguyen
D
, et al
.
Allogeneic FLT3 CAR T cells with an off-switch exhibit potent activity against AML and can be depleted to expedite bone marrow recovery
.
Mol Ther
.
2020
;
28
(
10
):
2237
-
2251
.
161.
Minagawa
K
,
Jamil
MO
,
Al-Obaidi
M
, et al
.
In vitro pre-clinical validation of suicide gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia
.
PLoS One
.
2016
;
11
(
12
):
e0166891
.
162.
Magnani
CF
,
Myburgh
R
,
Brunn
S
, et al
.
Anti-CD117 CAR T cells incorporating a safety switch eradicate human acute myeloid leukemia and hematopoietic stem cells
.
Mol Ther Oncolytics
.
2023
;
30
:
56
-
71
.
163.
Bouquet
L
,
Bole-Richard
E
,
Warda
W
, et al
.
RapaCaspase-9-based suicide gene applied to the safety of IL-1RAP CAR-T cells
.
Gene Ther
.
2023
;
30
(
9
):
706
-
713
.
164.
Hu
B
,
Ren
J
,
Luo
Y
, et al
.
Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18
.
Cell Rep
.
2017
;
20
(
13
):
3025
-
3033
.
165.
Avanzi
MP
,
Yeku
O
,
Li
X
, et al
.
Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system
.
Cell Rep
.
2018
;
23
(
7
):
2130
-
2141
.
166.
Christodoulou
I
,
Ho
WJ
,
Marple
A
, et al
.
Engineering CAR-NK cells to secrete IL-15 sustains their anti-AML functionality but is associated with systemic toxicities
.
J Immunother Cancer
.
2021
;
9
(
12
):
e003894
.
167.
Bailey
SR
,
Vatsa
S
,
Larson
RC
, et al
.
Blockade or deletion of IFNgamma reduces macrophage activation without compromising CAR T-cell function in hematologic malignancies
.
Blood Cancer Discov
.
2022
;
3
(
2
):
136
-
153
.
168.
Rocco
JM
,
Inglefield
J
,
Yates
B
, et al
.
Free interleukin-18 is elevated in CD22 CAR T-cell–associated hemophagocytic lymphohistiocytosis–like toxicities
.
Blood Adv
.
2023
;
7
(
20
):
6134
-
6139
.
169.
Frigault
MJ
,
Graham
CE
,
Berger
TR
, et al
.
Phase 1 study of CAR-37 T cells in patients with relapsed or refractory CD37+ lymphoid malignancies
.
Blood
.
2024
;
144
(
11
):
1153
-
1167
.
170.
Gurney
M
,
O'Reilly
E
,
Corcoran
S
, et al
.
Concurrent transposon engineering and CRISPR/Cas9 genome editing of primary CLL-1 chimeric antigen receptor-natural killer cells
.
Cytotherapy
.
2022
;
24
(
11
):
1087
-
1094
.
171.
Wei
J
,
Long
L
,
Zheng
W
, et al
.
Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy
.
Nature
.
2019
;
576
(
7787
):
471
-
476
.
172.
Zuo
S
,
Li
C
,
Sun
X
, et al
.
C-JUN overexpressing CAR-T cells in acute myeloid leukemia: preclinical characterization and phase I trial
.
Nat Commun
.
2024
;
15
(
1
):
6155
.
173.
Lin
G
,
Zhang
Y
,
Yu
L
,
Wu
D
.
Cytotoxic effect of CLL-1 CAR-T cell immunotherapy with PD-1 silencing on relapsed/refractory acute myeloid leukemia
.
Mol Med Rep
.
2021
;
23
(
3
):
208
.
174.
Wen
J
,
Chen
Y
,
Yang
J
, et al
.
Valproic acid increases CAR T cell cytotoxicity against acute myeloid leukemia
.
J Immunother Cancer
.
2023
;
11
(
7
):
e006857
.
175.
Alvarez Calderon
F
,
Kang
BH
,
Kyrysyuk
O
, et al
.
Targeting of the CD161 inhibitory receptor enhances T-cell-mediated immunity against hematological malignancies
.
Blood
.
2024
;
143
(
12
):
1124
-
1138
.
176.
Ustun
C
,
Miller
JS
,
Munn
DH
,
Weisdorf
DJ
,
Blazar
BR
.
Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation?
.
Blood
.
2011
;
118
(
19
):
5084
-
5095
.
177.
Wang
R
,
Feng
W
,
Wang
H
, et al
.
Blocking migration of regulatory T cells to leukemic hematopoietic microenvironment delays disease progression in mouse leukemia model
.
Cancer Lett
.
2020
;
469
:
151
-
161
.
178.
Alberti
G
,
Arsuffi
C
,
Pievani
A
, et al
.
Engineering tandem CD33xCD146 CAR CIK (cytokine-induced killer) cells to target the acute myeloid leukemia niche
.
Front Immunol
.
2023
;
14
:
1192333
.
179.
Pyzer
AR
,
Stroopinsky
D
,
Rajabi
H
, et al
.
MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia
.
Blood
.
2017
;
129
(
13
):
1791
-
1801
.
180.
Weinhauser
I
,
Pereira-Martins
DA
,
Almeida
LY
, et al
.
M2 macrophages drive leukemic transformation by imposing resistance to phagocytosis and improving mitochondrial metabolism
.
Sci Adv
.
2023
;
9
(
15
):
eadf8522
.
You do not currently have access to this content.
Sign in via your Institution