Abstract

Venetoclax (VEN) received full approval in October 2020 for use in older patients who are unfit with acute myeloid leukemia (AML) combined with either hypomethylating agents or low-dose cytarabine. This ended a semicentennial of stalled clinical progress and initiated a new treatment option with proven capacity to enhance response and prolong survival in older patients with AML. Despite widespread use of azacitidine-VEN (AZA-VEN), there is increasing appreciation that this regimen is myelosuppressive and associated with a higher risk of infectious complications than AZA alone. Key principles of initial management include prevention of tumor lysis syndrome in patients at high risk and minimizing infectious complications during induction. In the postremission phase, limiting cumulative marrow suppression by allowing sufficient time between cycles for optimal marrow recovery and truncating the duration of VEN exposure for those with delayed blood count recovery have emerged as important axioms of effective care. This article casts a clinical spotlight on important challenges and dilemmas encountered in practice. We also outline a structured framework to assist in the safe management of AZA-VEN in the clinic.

1.
Roberts
AW
,
Davids
MS
,
Pagel
JM
, et al
.
Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
311
-
322
.
2.
Konopleva
M
,
Contractor
R
,
Tsao
T
, et al
.
Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia
.
Cancer Cell
.
2006
;
10
(
5
):
375
-
388
.
3.
Van Delft
MF
,
Wei
AH
,
Mason
KD
, et al
.
The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Apoptosis: ABT737 kills more efficiently if Mcl-1 is neutralised
.
Cancer Cell
.
2006
;
10
(
5
):
389
-
399
.
4.
Vo
T-T
,
Ryan
J
,
Carrasco
R
, et al
.
Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML
.
Cell
.
2012
;
151
(
2
):
344
-
355
.
5.
Konopleva
M
,
Pollyea
DA
,
Potluri
J
, et al
.
Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1106
-
1117
.
6.
DiNardo
CD
,
Pratz
KW
,
Letai
A
, et al
.
Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study
.
Lancet Oncol
.
2018
;
19
(
2
):
216
-
228
.
7.
Wei
AH
,
Strickland
SA
,
Hou
JZ
, et al
.
Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study
.
J Clin Oncol
.
2019
;
37
(
15
):
1277
-
1284
.
8.
Wei
AH
,
Montesinos
P
,
Ivanov
V
, et al
.
Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial
.
Blood
.
2020
;
135
(
24
):
2137
-
2145
.
9.
DiNardo
CD
,
Jonas
BA
,
Pullarkat
V
, et al
.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia
.
N Engl J Med
.
2020
;
383
(
7
):
617
-
629
.
10.
Pratz
KW
,
Wei
AH
,
Pollyea
DA
, et al
.
Management of neutropenia during venetoclax-based combination treatment in patients with newly diagnosed acute myeloid leukemia [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
3897
.
11.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al
.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
12.
Bataller
A
,
Bazinet
A
,
DiNardo
CD
, et al
.
Prognostic risk signature in patients with acute myeloid leukemia treated with hypomethylating agents and venetoclax
.
Blood Adv
.
2024
;
8
(
4
):
927
-
935
.
13.
Pollyea
DA
,
Pratz
KW
,
Wei
AH
, et al
.
Outcomes in patients with poor-risk cytogenetics with or without TP53 mutations treated with venetoclax and azacitidine
.
Clin Cancer Res
.
2022
;
28
(
24
):
5272
-
5279
.
14.
Arora
S
,
Zainaldin
C
,
Bathini
S
, et al
.
Tumor lysis syndrome and infectious complications during treatment with venetoclax combined with azacitidine or decitabine in patients with acute myeloid leukemia
.
Leuk Res
.
2022
;
117
:
106844
.
15.
Othman
J
,
Lam
HPJ
,
Leong
S
, et al
.
Real-world outcomes of newly diagnosed AML treated with venetoclax and azacitidine or low-dose cytarabine in the UK NHS
.
Blood Neoplasia
.
2024
;
1
(
3
):
100017
.
16.
Winters
AC
,
Gutman
JA
,
Purev
E
, et al
.
Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia
.
Blood Adv
.
2019
;
3
(
20
):
2911
-
2919
.
17.
Morsia
E
,
McCullough
K
,
Joshi
M
, et al
.
Venetoclax and hypomethylating agents in acute myeloid leukemia: Mayo Clinic series on 86 patients
.
Am J Hematol
.
2020
;
95
(
12
):
1511
-
1521
.
18.
Apel
A
,
Moshe
Y
,
Ofran
Y
, et al
.
Venetoclax combinations induce high response rates in newly diagnosed acute myeloid leukemia patients ineligible for intensive chemotherapy in routine practice
.
Am J Hematol
.
2021
;
96
(
7
):
790
-
795
.
19.
Kwag
D
,
Cho
BS
,
Bang
SY
, et al
.
Venetoclax with decitabine versus decitabine monotherapy in elderly acute myeloid leukemia: a propensity score-matched analysis
.
Blood Cancer J
.
2022
;
12
(
12
):
169
.
20.
Garciaz
S
,
Hospital
MA
,
Alary
AS
, et al
.
Azacitidine plus venetoclax for the treatment of relapsed and newly diagnosed acute myeloid leukemia patients
.
Cancers
.
2022
;
14
(
8
):
2025
.
21.
De Bellis
E
,
Imbergamo
S
,
Candoni
A
, et al
.
Venetoclax in combination with hypomethylating agents in previously untreated patients with acute myeloid leukemia ineligible for intensive treatment: a real-life multicenter experience
.
Leuk Res
.
2022
;
114
:
106803
.
22.
Vachhani
P
,
Flahavan
EM
,
Xu
T
, et al
.
Venetoclax and hypomethylating agents as first-line treatment in newly diagnosed patients with AML in a predominately community setting in the US
.
Oncol
.
2022
;
27
(
11
):
907
-
918
.
23.
Gershon
A
,
Ma
E
,
Xu
T
, et al
.
Early real-world first-line treatment with venetoclax plus HMAs versus HMA monotherapy among patients with AML in a predominately US community setting
.
Clin Lymphoma Myeloma Leuk
.
2023
;
23
(
5
):
e222
-
e231
.
24.
Todisco
E
,
Papayannidis
C
,
Fracchiolla
N
, et al
.
AVALON: the Italian cohort study on real-life efficacy of hypomethylating agents plus venetoclax in newly diagnosed or relapsed/refractory patients with acute myeloid leukemia
.
Cancer
.
2023
;
129
(
7
):
992
-
1004
.
25.
Abaza
Y
,
Winer
ES
,
Murthy
GSG
, et al
.
Clinical outcomes of hypomethylating agents plus venetoclax as frontline treatment in patients 75 years and older with acute myeloid leukemia: real-world data from eight US academic centers
.
Am J Hematol
.
2024
;
99
(
4
):
606
-
614
.
26.
Gat
R
,
Neeman
M
,
Levi
S
, et al
.
Outpatient initiation of venetoclax-azacitidine for selected acute myeloid leukemia patients is feasible and save: a real world single center analysis
.
Hemasphere
.
2023
;
7
(
S3
):
e4811210
.
27.
Mrózek
K
,
Kohlschmidt
J
,
Blachly
JS
, et al
.
Outcome prediction by the 2022 European LeukemiaNet genetic-risk classification for adults with acute myeloid leukemia: an Alliance study
.
Leukemia
.
2023
;
37
(
4
):
788
-
798
.
28.
Lazenby
M
,
Gilkes
AF
,
Marrin
C
,
Evans
A
,
Hills
RK
,
Burnett
AK
.
The prognostic relevance of flt3 and npm1 mutations on older patients treated intensively or non-intensively: a study of 1312 patients in the UK NCRI AML16 trial
.
Leukemia
.
2014
;
28
(
10
):
1953
-
1959
.
29.
Ostronoff
F
,
Othus
M
,
Lazenby
M
, et al
.
Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report
.
J Clin Oncol
.
2015
;
33
(
10
):
1157
-
1164
.
30.
Döhner
H
,
Pratz
KW
,
DiNardo
CD
, et al
.
Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine
.
Blood
.
Published online 12 August 2024
.
31.
Döhner
H
,
DiNardo
CD
,
Wei
AH
, et al
.
Genetic risk classification for adults with AML receiving less-intensive therapies: the 2024 ELN recommendations
.
Blood
.
Published online 12 August 2024
.
32.
DiNardo
C
,
Pratz
K
,
Panayiotidis
P
, et al
.
P510: the impact of post-remission granulocyte colony-stimulating factor use in the phase 3 studies of venetoclax combination treatments in patients with newly diagnosed acute myeloid leukemia
.
HemaSphere
.
2022
;
6
:
409
-
410
.
33.
Palmer
S
,
Patel
A
,
Wang
C
, et al
.
Outpatient initiation of venetoclax in patients with acute myeloid leukemia
.
J Oncol Pharm Pract
.
2023
;
29
(
7
):
1590
-
1598
.
34.
Diao
S
,
Nichols
ED
,
DiNardo
C
, et al
.
Incidence of tumor lysis syndrome in patients with acute myeloid leukemia undergoing low-intensity induction with venetoclax
.
Am J Hematol
.
2021
;
96
(
3
):
E65
-
E68
.
35.
Zhang
A
,
Johnson
T
,
Abbott
D
, et al
.
Incidence of invasive fungal infections in patients with previously untreated acute myeloid leukemia receiving venetoclax and azacitidine
.
Open Forum Inf Dis
.
2022
;
9
(
10
):
ofac486
.
36.
On
S
,
Rath
CG
,
Lan
M
, et al
.
Characterisation of infections in patients with acute myeloid leukaemia receiving venetoclax and a hypomethylating agent
.
Br J Haematol
.
2022
;
197
(
1
):
63
-
70
.
37.
Chen
EC
,
Liu
Y
,
Harris
CE
, et al
.
Outcomes of antifungal prophylaxis for newly diagnosed AML patients treated with a hypomethylating agent and venetoclax
.
Leuk Lymphoma
.
2022
;
63
(
8
):
1934
-
1941
.
38.
Agarwal
SK
,
DiNardo
CD
,
Potluri
J
, et al
.
Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: evaluation of dose adjustments
.
Clin Ther
.
2017
;
39
(
2
):
359
-
367
.
39.
Wiederhold
NP
.
Pharmacokinetics and safety of posaconazole delayed-release tablets for invasive fungal infections
.
Clin Pharmacol
.
2016
;
8
:
1
-
8
.
40.
De Gregori
S
,
Gelli
E
,
Capone
M
, et al
.
Pharmacokinetics of venetoclax co-administered with posaconazole in patients with acute myeloid leukemia
.
Pharmaceutics
.
2023
;
15
(
6
):
1680
.
41.
Othman
J
,
Tiong
IS
,
O'Nions
J
, et al
.
Molecular MRD is strongly prognostic in patients with NPM1-mutated AML receiving venetoclax-based nonintensive therapy
.
Blood
.
2024
;
143
(
4
):
336
-
341
.
42.
Gutman
JA
,
Winters
A
,
Kent
A
, et al
.
Higher-dose venetoclax with measurable residual disease-guided azacitidine discontinuation in newly diagnosed acute myeloid leukemia
.
Haematologica
.
2023
;
108
(
10
):
2616
-
2625
.
43.
Garciaz
S
,
Bertoli
S
,
Sallman
DA
, et al
.
Acute myeloid leukemia patients who stopped venetoclax or/and azacytidine for other reasons than progression have a prolonged treatment free remission and overall survival. a Filo study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
161
.
44.
Chua
CC
,
Hammond
D
,
Kent
A
, et al
.
Treatment-free remission after ceasing venetoclax-based therapy in patients with acute myeloid leukemia
.
Blood Adv
.
2022
;
6
(
13
):
3879
-
3883
.
45.
Sasaki
K
,
Kadia
T
,
Begna
K
, et al
.
Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy
.
Am J Hematol
.
2022
;
97
(
1
):
68
-
78
.
46.
Walter
RB
,
Othus
M
,
Borthakur
G
, et al
.
Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: a novel paradigm for treatment assignment
.
J Clin Oncol
.
2011
;
29
(
33
):
4417
-
4423
.
47.
Pratz
KW
,
DiNardo
CD
,
Selleslag
D
, et al
.
Postremission cytopenia management in patients with acute myeloid leukemia treated with venetoclax and azacitidine in VIALE-A
.
Am J Hematol
.
2022
;
97
(
11
):
E416
-
E419
.
48.
Konopleva
M
,
Thirman
MJ
,
Pratz
KW
, et al
.
Impact of FLT3 mutation on outcomes after venetoclax and azacitidine for patients with treatment-naive acute myeloid leukemia
.
Clin Cancer Res
.
2022
;
28
(
13
):
2744
-
2752
.
49.
Arries
CD
,
Yohe
SL
.
Monocytic maturation induced by FLT3 inhibitor therapy of acute myeloid leukemia: morphologic and immunophenotypic characteristics
.
Lab Med
.
2020
;
51
(
5
):
478
-
483
.
50.
Aldoss
I
,
Yang
D
,
Pillai
R
, et al
.
Association of leukemia genetics with response to venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia
.
Am J Hematol
.
2019
;
94
(
10
):
E253
-
E255
.
51.
Stahl
M
,
Menghrajani
K
,
Derkach
A
, et al
.
Clinical and molecular predictors of response and survival following venetoclax therapy in relapsed/refractory AML
.
Blood Adv
.
2021
;
5
(
5
):
1552
-
1564
.
52.
DiNardo
CD
,
Maiti
A
,
Rausch
CR
, et al
.
10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: a single-centre, phase 2 trial
.
Lancet Haematol
.
2020
;
7
(
10
):
e724
-
e736
.
53.
Lou
Y
,
Shao
L
,
Mao
L
, et al
.
Efficacy and predictive factors of venetoclax combined with azacitidine as salvage therapy in advanced acute myeloid leukemia patients: a multicenter retrospective study
.
Leuk Res
.
2020
;
91
:
106317
.
54.
Piccini
M
,
Pilerci
S
,
Merlini
M
, et al
.
Venetoclax-based regimens for relapsed/refractory acute myeloid leukemia in a real-life setting: a retrospective single-center experience
.
J Clin Med
.
2021
;
10
(
8
):
1684
.
55.
Feld
J
,
Tremblay
D
,
Dougherty
M
, et al
.
Safety and efficacy: clinical experience of venetoclax in combination with hypomethylating agents in both newly diagnosed and relapsed/refractory advanced myeloid malignancies
.
Hemasphere
.
2021
;
5
(
4
):
e549
.
56.
DiNardo
CD
,
Rausch
CR
,
Benton
C
, et al
.
Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies
.
Am J Hematol
.
2018
;
93
(
3
):
401
-
407
.
57.
Aldoss
I
,
Yang
D
,
Aribi
A
, et al
.
Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia
.
Haematologica
.
2018
;
103
(
9
):
e404
-
e407
.
58.
Tenold
ME
,
Moskoff
BN
,
Benjamin
DJ
, et al
.
Outcomes of adults with relapsed/refractory acute myeloid leukemia treated with venetoclax plus hypomethylating agents at a comprehensive cancer center
.
Front Oncol
.
2021
;
11
:
649209
.
59.
Lachowiez
CA
,
Loghavi
S
,
Kadia
TM
, et al
.
Outcomes of older patients with NPM1-mutated AML: current treatments and the promise of venetoclax-based regimens
.
Blood Adv
.
2020
;
4
(
7
):
1311
-
1320
.
60.
Gangat
N
,
Karrar
O
,
Iftikhar
M
, et al
.
Venetoclax and hypomethylating agent combination therapy in newly diagnosed acute myeloid leukemia: genotype signatures for response and survival among 301 consecutive patients
.
Am J Hematol
.
2024
;
99
(
2
):
193
-
202
.
61.
Wang
M
,
Cao
HY
,
Tan
KW
, et al
.
Venetoclax plus hypomethylating agents in newly diagnosed acute myeloid leukemia patients with RUNX1::RUNX1T1: a retrospective propensity score matching study
.
Blood Cancer J
.
2023
;
13
(
1
):
173
.
62.
Arslan
S
,
Zhang
J
,
Dhakal
P
, et al
.
Outcomes of therapy with venetoclax combined with a hypomethylating agent in favorable-risk acute myeloid leukemia
.
Am J Hematol
.
2021
;
96
(
3
):
E59
-
E63
.
63.
Pollyea
DA
,
DiNardo
CD
,
Arellano
ML
, et al
.
Impact of venetoclax and azacitidine in treatment-naive patients with acute myeloid leukemia and IDH1/2 mutations
.
Clin Cancer Res
.
2022
;
28
(
13
):
2753
-
2761
.
64.
Shimony
S
,
Garcia
JS
,
Keating
J
, et al
.
Molecular ontogeny underlies the benefit of adding venetoclax to hypomethylating agents in newly diagnosed AML patients
.
Leukemia
.
2024
;
38
(
7
):
1494
-
1500
.
65.
Badar
T
,
Nanaa
A
,
Atallah
E
, et al
.
Comparing venetoclax in combination with hypomethylating agents to hypomethylating agent-based therapies for treatment naive TP53-mutated acute myeloid leukemia: results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND)
.
Blood Cancer J
.
2024
;
14
(
1
):
32
.
66.
Lachowiez
CA
,
Loghavi
S
,
Furudate
K
, et al
.
Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax
.
Blood Adv
.
2021
;
5
(
8
):
2173
-
2183
.
67.
Senapati
J
,
Urrutia
S
,
Loghavi
S
, et al
.
Venetoclax abrogates the prognostic impact of splicing factor gene mutations in newly diagnosed acute myeloid leukemia
.
Blood
.
2023
;
142
(
19
):
1647
-
1657
.
68.
Stone
RM
,
Mandrekar
SJ
,
Sanford
BL
, et al
.
Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation
.
N Engl J Med
.
2017
;
377
(
5
):
454
-
464
.
69.
Erba
HP
,
Montesinos
P
,
Kim
HJ
, et al
.
Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial
.
Lancet
.
2023
;
401
(
10388
):
1571
-
1583
.
70.
Wang
ES
,
Montesinos
P
,
Minden
MD
, et al
.
Phase 3 trial of gilteritinib plus azacitidine vs azacitidine for newly diagnosed FLT3mut+ AML ineligible for intensive chemotherapy
.
Blood
.
2022
;
140
(
17
):
1845
-
1857
.
71.
Daver
N
,
Perl
AE
,
Maly
J
, et al
.
Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia
.
J Clin Oncol
.
2022
;
40
(
35
):
4048
-
4059
.
72.
Dumas
PY
,
Villacreces
A
,
Guitart
AV
, et al
.
Dual inhibition of FLT3 and AXL by gilteritinib overcomes hematopoietic niche-driven resistance mechanisms in FLT3-ITD acute myeloid leukemia
.
Clin Cancer Res
.
2021
;
27
(
21
):
6012
-
6025
.
73.
Short
NJ
,
Daver
N
,
Dinardo
CD
, et al
.
Azacitidine, venetoclax, and gilteritinib in newly diagnosed and relapsed or refractory FLT3-mutated AML
.
J Clin Oncol
.
2024
;
42
(
13
):
1499
-
1508
.
74.
Pratz
KW
,
Jonas
BA
,
Pullarkat
V
, et al
.
Long-term follow-up of VIALE-A: venetoclax and azacitidine in chemotherapy-ineligible untreated acute myeloid leukemia
.
Am J Hematol
.
2024
;
99
(
4
):
615
-
624
.
75.
Pratz
K
,
DiNardo
C
,
Arellano
M
, et al
.
Long-term outcomes of stem cell transplant in older patients with acute myeloid leukemia treated with venetoclax + HMA therapies
.
HemaSphere
.
2023
;
7
:
e68978fe
.
76.
Bachiashvili
K
,
Ma
e
,
Patel
A
, et al
.
Treatment outcomes of stem cell transplant in patients with acute myeloid leukemia treated with venetoclax in combination with hypomethylating agents: experience from routine clinical practices in the United States [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
7415
.
77.
Pollyea
DA
,
Winters
A
,
McMahon
C
, et al
.
Venetoclax and azacitidine followed by allogeneic transplant results in excellent outcomes and may improve outcomes versus maintenance therapy among newly diagnosed AML patients older than 60
.
Bone Marrow Transplant
.
2022
;
57
(
2
):
160
-
166
.
78.
Bahaj
W
,
Kewan
T
,
Gurnari
C
, et al
.
Novel scheme for defining the clinical implications of TP53 mutations in myeloid neoplasia
.
J Hematol Oncol
.
2023
;
16
(
1
):
91
.
79.
Marvin-Peek
J
,
Mason
EF
,
Kishtagari
A
, et al
.
TP53 mutations are associated with increased infections and reduced hematopoietic cell transplantation rates in myelodysplastic syndrome and acute myeloid leukemia
.
Transplant Cell Ther
.
2023
;
29
(
6
):
390.e1
-
390.e10
.
80.
Welch
JS
,
Petti
AA
,
Miller
CA
, et al
.
TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes
.
N Engl J Med
.
2016
;
375
(
21
):
2023
-
2036
.
81.
Savona
M
,
McCloskey
J
,
Griffiths
E
, et al
.
Prolonged survival in bi-allelic TP53-mutated (TP53mut) MDS subjects treated with oral decitabine/cedazuridine in the Ascertain trial (ASTX727-02) [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
2066
-
2069
.
82.
Hunter
AM
,
Komrokji
RS
,
Yun
S
, et al
.
Baseline and serial molecular profiling predicts outcomes with hypomethylating agents in myelodysplastic syndromes
.
Blood Adv
.
2021
;
5
(
4
):
1017
-
1028
.
83.
Short
NJ
,
Montalban-Bravo
G
,
Hwang
H
, et al
.
Prognostic and therapeutic impacts of mutant TP53 variant allelic frequency in newly diagnosed acute myeloid leukemia
.
Blood Adv
.
2020
;
4
(
22
):
5681
-
5689
.
84.
Fleming
S
,
Tsai
XC
,
Morris
R
,
Hou
HA
,
Wei
AH
.
TP53 status and impact on AML prognosis within the ELN 2022 risk classification
.
Blood
.
2023
;
142
(
23
):
2029
-
2033
.
85.
Grob
T
,
Al Hinai
ASA
,
Sanders
MA
, et al
.
Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome
.
Blood
.
2022
;
139
(
15
):
2347
-
2354
.
86.
Issa
GC
,
Bidikian
A
,
Venugopal
S
, et al
.
Clinical outcomes associated with NPM1 mutations in patients with relapsed or refractory AML
.
Blood Adv
.
2023
;
7
(
6
):
933
-
942
.
87.
Tiong
IS
,
Dillon
R
,
Ivey
A
, et al
.
Venetoclax induces rapid elimination of NPM1 mutant measurable residual disease in combination with low-intensity chemotherapy in acute myeloid leukaemia
.
Br J Haematol
.
2021
;
192
(
6
):
1026
-
1030
.
88.
Wood
H
,
Bourlon
C
,
Kulasekararaj
A
, et al
.
Venetoclax-based non-intensive combinations successfully salvage molecular relapse of acute myeloid leukemia and are an important bridge to cellular therapy in relapsed/refractory disease – real-world data from a UK-wide programme [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
9016
-
9018
.
89.
Tiong
IS
,
Hiwase
DK
,
Abro
E
, et al
.
Targeting molecular measurable residual disease and low-blast relapse in AML with venetoclax and low-dose cytarabine: a prospective phase II study (VALDAC)
.
J Clin Oncol
.
2024
;
42
(
18
):
2161
-
2173
.
90.
Li
Z
,
Wang
J
,
Ge
SS
, et al
.
Combination of venetoclax and midostaurin efficiently suppressed relapsed t(8;21)acute myeloid leukemia with mutant KIT after failure of venetoclax plus azacitidine treatment
.
Front Oncol
.
2022
;
12
:
841276
.
91.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
92.
Kuusanmaki
H
,
Dufva
O
,
Vaha-Koskela
M
, et al
.
Erythroid/megakaryocytic differentiation confers BCL-XL dependency and venetoclax resistance in acute myeloid leukemia
.
Blood
.
2023
;
141
(
13
):
1610
-
1625
.
93.
Bisaillon
R
,
Moison
C
,
Thiollier
C
, et al
.
Genetic characterization of ABT-199 sensitivity in human AML
.
Leukemia
.
2019
;
34
(
1
):
63
-
74
.
94.
Moujalled
DM
,
Brown
FC
,
Chua
CC
, et al
.
Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia
.
Blood
.
2023
;
141
(
6
):
634
-
644
.
95.
Chen
X
,
Glytsou
C
,
Zhou
H
, et al
.
Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment
.
Cancer Discov
.
2019
;
9
(
7
):
890
-
909
.
96.
Nechiporuk
T
,
Kurtz
SE
,
Nikolova
O
, et al
.
The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells
.
Cancer Discov
.
2019
;
9
(
7
):
910
-
925
.
97.
Thijssen
R
,
Diepstraten
ST
,
Moujalled
D
, et al
.
Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias
.
Blood
.
2021
;
137
(
20
):
2721
-
2735
.
98.
Sharon
D
,
Jung
P
,
Sun
Y
, et al
.
DELE1 loss and dysfunctional integrated stress signaling in TP53 mutated AML is a novel pathway for venetoclax resistance
.
Cancer Res
.
2023
;
83
(
suppl 7
):
2530
.
99.
Nishida
Y
,
Ishizawa
J
,
Ruvolo
V
, et al
.
TP73 as novel determinant of resistance to BCL-2 inhibition in acute myeloid leukemia [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
1251
.
100.
Lagadinou
ED
,
Sach
A
,
Callahan
K
, et al
.
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells
.
Cell Stem Cell
.
2013
;
12
(
3
):
329
-
341
.
101.
Jones
CL
,
Stevens
BM
,
Pollyea
DA
, et al
.
Nicotinamide metabolism mediates resistance to venetoclax in relapsed acute myeloid leukemia stem cells
.
Cell Stem Cell
.
2020
;
27
(
5
):
748
-
764.e4
.
102.
Stevens
BM
,
Jones
CL
,
Pollyea
DA
, et al
.
Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells
.
Nat Cancer
.
2020
;
1
(
12
):
1176
-
1187
.
You do not currently have access to this content.
Sign in via your Institution