• CH analysis of a unique and uniform cohort of exclusively healthy individuals exposed to a novel type of selection pressure was conducted.

  • Novel EPO-responsive DNMT3A mutations with distinct in vivo and in vitro growth behavior were identified.

Abstract

Donor blood saves lives, yet the potential impact of recurrent large-volume phlebotomy on donor health and hematopoietic stem cells (HSCs) remains largely unexplored. In our study, we conducted a comprehensive screening of 217 older male volunteer donors with a history of extensive blood donation (>100 lifetime donations) to investigate the phenomenon of clonal hematopoiesis (CH). No significant difference in the overall incidence of CH was found in frequent donors (FDs) compared with sporadic donors (<10 lifetime donations; 212 donors). However, upon deeper analysis of mutations in DNMT3A, the most commonly affected gene in CH, we observed distinct mutational patterns between the FD and age/sex-matched control donor cohorts. Functional analysis of FD-enriched DNMT3A variants examined in CRISPR-edited human HSCs demonstrated their competitive outgrowth potential upon stimulation with erythropoietin (EPO), a hormone that increases in response to blood loss. In contrast, clones harboring leukemogenic DNMT3A R882 mutations increase upon stimulation with interferon gamma. Through concurrent mutational and immunophenotypic profiling of primary samples at single-cell resolution, a myeloid bias of premalignant R882 mutant HSCs was found, whereas no significant lineage bias was observed in HSCs harboring EPO-responsive DNMT3A variants. The latter exhibited preferential erythroid differentiation when persistent erythropoietic stress was applied to CRISPR-edited human HSC xenografts. Our data demonstrate a nuanced, ongoing Darwinian evolution at the somatic stem cell level, with EPO identified as a novel environmental factor that favors HSCs carrying certain DNMT3A mutations.

1.
Ritter
S
,
Hamouda
O
,
Offergeld
R
.
[Demography and donation frequencies of blood and plasma donor populations in Germany. Update 2010 and 5-year comparison]
.
Bundesgesundheitsbl
.
2012
;
55
(
8
):
914
-
922
.
2.
Association GM
.
Guideline for Manufacturing of Blood and Blood Components and Hemotherapy (Hemotherapy Guidelines). Deutscher Aerzteverlag
. Accessed 7 December 2024. https://www.bundesaerztekammer.de/fileadmin/user_upload/BAEK/Themen/Medizin_und_Ethik/Richtlinie-Haemotherapie-2023_neu2.pdf.
3.
Blood Donor Selection: Guidelines on Assessing Donor Suitability for Blood Donation
.
World Health Organization
;
2012
.
4.
Nadler
SB
,
Hidalgo
JH
,
Bloch
T
.
Prediction of blood volume in normal human adults
.
Surgery
.
1962
;
51
(
2
):
224
-
232
.
5.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823.e19
.
6.
Baldridge
MT
,
King
KY
,
Boles
NC
,
Weksberg
DC
,
Goodell
MA
.
Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection
.
Nature
.
2010
;
465
(
7299
):
793
-
797
.
7.
Essers
MA
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
8.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature
.
2015
;
520
(
7548
):
549
-
552
.
9.
Heyde
A
,
Rohde
D
,
McAlpine
CS
, et al
.
Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis
.
Cell
.
2021
;
184
(
5
):
1348
-
1361.e22
.
10.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
11.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
12.
Xie
M
,
Lu
C
,
Wang
J
, et al
.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
.
Nat Med
.
2014
;
20
(
12
):
1472
-
1478
.
13.
Kaufman
R
. Red blood cell life span, senescence, and destruction. In:
Benz
Edward J
,
Berliner
N
,
Schiffman
FJ
, eds.
Anemia: Pathophysiology, Diagnosis, and Management. Vol 1. 1st ed.
Cambridge University Press
;
2017
:
19
-
22
.
14.
An
G
,
Widness
JA
,
Mock
DM
,
Veng-Pedersen
P
.
A novel physiology-based mathematical model to estimate red blood cell lifespan in different human age groups
.
AAPS J
.
2016
;
18
(
5
):
1182
-
1191
.
15.
Musi
N
,
Hornsby
P
. Handbook of the Biology of Aging. 9th ed.
Academic Press
;
2021
.
16.
Maeda
H
,
Hitomi
Y
,
Hirata
R
, et al
.
The effect of phlebotomy on serum erythropoietin levels in normal healthy subjects
.
Int J Hematol
.
1992
;
55
(
2
):
111
-
115
.
17.
Hormaechea-Agulla
D
,
Matatall
KA
,
Le
DT
, et al
.
Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling
.
Cell Stem Cell
.
2021
;
28
(
8
):
1428
-
1442.e6
.
18.
Wong
TN
,
Miller
CA
,
Jotte
MRM
, et al
.
Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
.
Nat Commun
.
2018
;
9
(
1
):
455
.
19.
Huerga Encabo
H
,
Aramburu
IV
,
Garcia-Albornoz
M
, et al
.
Loss of TET2 in human hematopoietic stem cells alters the development and function of neutrophils
.
Cell Stem Cell
.
2023
;
30
(
6
):
781
-
799.e9
.
20.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al
.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
21.
Bolton
KL
,
Koh
Y
,
Foote
MB
, et al
.
Clonal hematopoiesis is associated with risk of severe Covid-19
.
Nat Commun
.
2021
;
12
(
1
):
5975
.
22.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e4
.
23.
Pincez
T
,
Lee
SSK
,
Ilboudo
Y
, et al
.
Clonal hematopoiesis in sickle cell disease
.
Blood
.
2021
;
138
(
21
):
2148
-
2152
.
24.
Wouters
H
,
Mulder
R
,
van Zeventer
IA
, et al
.
Erythrocytosis in the general population: clinical characteristics and association with clonal hematopoiesis
.
Blood Adv
.
2020
;
4
(
24
):
6353
-
6363
.
25.
Yoshizato
T
,
Dumitriu
B
,
Hosokawa
K
, et al
.
Somatic mutations and clonal hematopoiesis in aplastic anemia
.
N Engl J Med
.
2015
;
373
(
1
):
35
-
47
.
26.
Cohen
RM
,
Franco
RS
,
Khera
PK
, et al
.
Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c
.
Blood
.
2008
;
112
(
10
):
4284
-
4291
.
27.
Huang
YH
,
Chen
CW
,
Sundaramurthy
V
, et al
.
Systematic profiling of DNMT3A variants reveals protein instability mediated by the DCAF8 E3 ubiquitin ligase adaptor
.
Cancer Discov
.
2022
;
12
(
1
):
220
-
235
.
28.
Watson
CJ
,
Papula
AL
,
Poon
GYP
, et al
.
The evolutionary dynamics and fitness landscape of clonal hematopoiesis
.
Science (1979)
.
2020
;
367
(
6485
):
1449
-
1454
.
29.
Young
AL
,
Challen
GA
,
Birmann
BM
,
Druley
TE
.
Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
.
Nat Commun
.
2016
;
7
:
12484
.
30.
Brunetti
L
,
Gundry
MC
,
Goodell
MA
.
DNMT3A in leukemia
.
Cold Spring Harb Perspect Med
.
2017
;
7
(
2
):
a030320
.
31.
Lindeboom
RGH
,
Supek
F
,
Lehner
B
.
The rules and impact of nonsense-mediated mRNA decay in human cancers
.
Nat Genet
.
2016
;
48
(
10
):
1112
-
1118
.
32.
Russler-Germain
DA
,
Spencer
DH
,
Young
MA
, et al
.
The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers
.
Cancer Cell
.
2014
;
25
(
4
):
442
-
454
.
33.
Anteneh
H
,
Fang
J
,
Song
J
.
Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation
.
Nat Commun
.
2020
;
11
(
1
):
2294
.
34.
Zhang
Z-M
,
Lu
R
,
Wang
P
, et al
.
Structural basis for DNMT3A-mediated de novo DNA methylation
.
Nature
.
2018
;
554
(
7692
):
387
-
391
.
35.
Nam
AS
,
Dusaj
N
,
Izzo
F
, et al
.
Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation
.
Nat Genet
.
2022
;
54
(
10
):
1514
-
1526
.
36.
Shlush
LI
,
Zandi
S
,
Mitchell
A
, et al
.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia
.
Nature
.
2014
;
506
(
7488
):
328
-
333
.
37.
Tovy
A
,
Rosas
C
,
Gaikwad
AS
, et al
.
Perturbed hematopoiesis in individuals with germline DNMT3A overgrowth Tatton-Brown-Rahman syndrome
.
Haematologica
.
2022
;
107
(
4
):
887
-
898
.
38.
Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee
.
Guidelines for the blood transfusion and tissue transplantation Services in the UK. 3.7: volume of donation
. Accessed 4 December 2024. https://www.transfusionguidelines.org/red-book/chapter-3-care-and-selection-of-whole-blood-and-component-donors-including-donors-of-pre-deposit-autologous-blood/3-7-volume-of-donation.
39.
Cheshier
SH
,
Prohaska
SS
,
Weissman
IL
.
The effect of bleeding on hematopoietic stem cell cycling and self-renewal
.
Stem Cells Dev
.
2007
;
16
(
5
):
707
-
717
.
40.
Goodnough
LT
,
Skikne
B
,
Brugnara
C
.
Erythropoietin, iron, and erythropoiesis
.
Blood
.
2000
;
96
(
3
):
823
-
833
.
41.
Suresh
S
,
Rajvanshi
PK
,
Noguchi
CT
.
The many facets of erythropoietin physiologic and metabolic response
.
Front Physiol
.
2020
;
10
:
1534
.
42.
Goldberg
MA
,
Dunning
SP
,
Bunn
HF
.
Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein
.
Science (1979)
.
1988
;
242
(
4884
):
1412
-
1415
.
43.
Kickler
TS
,
Spivak
JL
.
Effect of repeated whole blood donations on serum immunoreactive erythropoietin levels in autologous donors
.
JAMA
.
1988
;
260
(
1
):
65
-
67
.
44.
Mast
AE
,
Szabo
A
,
Stone
M
, et al
.
The benefits of iron supplementation following blood donation vary with baseline iron status
.
Am J Hematol
.
2020
;
95
(
7
):
784
-
791
.
45.
Lorentz
A
,
Eckardt
K-U
,
Osswald
PM
,
Duchow
JR
.
Erythropoietin levels in patients depositing autologous blood in short intervals
.
Ann Hematol
.
1992
;
64
(
6
):
281
-
285
.
46.
Kurita
R
,
Suda
N
,
Sudo
K
, et al
.
Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells
.
PLoS One
.
2013
;
8
(
3
):
e59890
.
47.
Li
C
,
Wang
H
,
Georgakopoulou
A
,
Gil
S
,
Yannaki
E
,
Lieber
A
.
In vivo HSC gene therapy using a Bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model
.
Mol Ther
.
2021
;
29
:
822
-
837
.
48.
Dillon
LW
,
Ghannam
J
,
Nosiri
C
, et al
.
Personalized single-cell proteogenomics to distinguish acute myeloid leukemia from non-malignant clonal hematopoiesis
.
Blood Cancer Discov
.
2021
;
2
(
4
):
319
-
325
.
49.
Miles
LA
,
Bowman
RL
,
Merlinsky
TR
, et al
.
Single-cell mutation analysis of clonal evolution in myeloid malignancies
.
Nature
.
2020
;
587
(
7834
):
477
-
482
.
50.
Triana
S
,
Vonficht
D
,
Jopp-Saile
L
, et al
.
Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states
.
Nat Immunol
.
2021
;
22
(
12
):
1577
-
1589
.
51.
Chaudry
SF
,
Chevassut
TJT
.
Epigenetic guardian: a review of the DNA methyltransferase DNMT3A in acute myeloid leukaemia and clonal haematopoiesis
.
Biomed Res Int
.
2017
;
2017
:
5473197
.
52.
Chan
SM
,
Majeti
R
.
Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia
.
Int J Hematol
.
2013
;
98
(
6
):
648
-
657
.
53.
Corces-Zimmerman
MR
,
Majeti
R
.
Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis
.
Leukemia
.
2014
;
28
(
12
):
2276
-
2282
.
54.
Zhao
J
,
Dahlén
T
,
Brynolf
A
,
Edgren
G
.
Risk of hematological malignancy in blood donors: a nationwide cohort study
.
Transfusion (Paris)
.
2020
;
60
(
11
):
2591
-
2596
.
55.
Nielsen
C
,
Birgens
HS
,
Nordestgaard
BG
,
Kjaer
L
,
Bojesen
SE
.
The JAK2 V617F somatic mutation, mortality and cancer risk in the general population
.
Haematologica
.
2011
;
96
(
3
):
450
-
453
.
56.
Zon
RL
,
Sekar
A
,
Clapham
K
, et al
.
JAK2-mutant clonal hematopoiesis is associated with venous thromboembolism
.
Blood
.
2024
;
144
(
20
):
2149
-
2154
.
57.
Kessler
MD
,
Damask
A
,
O'Keeffe
S
, et al
.
Common and rare variant associations with clonal haematopoiesis phenotypes
.
Nature
.
2022
;
612
(
7939
):
301
-
309
.
58.
Stonestrom
AJ
,
Menghrajani
KN
,
Devlin
SM
, et al
.
High-risk and silent clonal hematopoietic genotypes in patients with nonhematologic cancer
.
Blood Adv
.
2024
;
8
(
4
):
846
-
856
.
59.
COLAIZZO
D
,
Amitrano
L
,
Tiscia
GL
, et al
.
The JAK2 V617F mutation frequently occurs in patients with portal and mesenteric venous thrombosis
.
J Thromb Haemost
.
2007
;
5
(
1
):
55
-
61
.
60.
Sudlow
C
,
Gallacher
J
,
Allen
N
, et al
.
UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
.
PLoS Med
.
2015
;
12
(
3
):
e1001779
.
61.
Hsu
JI
,
Dayaram
T
,
Tovy
A
, et al
.
PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy
.
Cell Stem Cell
.
2018
;
23
(
5
):
700
-
713.e6
.
62.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
63.
Tuval
A
,
Shlush
LI
.
Evolutionary trajectory of leukemic clones and its clinical implications
.
Haematologica
.
2019
;
104
(
5
):
872
-
880
.
64.
Cai
Z
,
Kotzin
JJ
,
Ramdas
B
, et al
.
Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis
.
Cell Stem Cell
.
2018
;
23
(
6
):
833
-
849.e5
.
65.
Challen
GA
,
Sun
D
,
Jeong
M
, et al
.
Dnmt3a is essential for hematopoietic stem cell differentiation
.
Nat Genet
.
2011
;
44
(
1
):
23
-
31
.
66.
Kunimoto
H
,
Fukuchi
Y
,
Sakurai
M
, et al
.
Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells
.
Sci Rep
.
2012
;
2
:
273
.
67.
Marieb
EN
,
Hoehn
K
. Human Anatomy & Physiology: Pearson New International Edition. 9th ed.
Pearson Education Limited
;
2013
.
68.
Izzo
F
,
Lee
SC
,
Poran
A
, et al
.
DNA methylation disruption reshapes the hematopoietic differentiation landscape
.
Nat Genet
.
2020
;
52
(
4
):
378
-
387
.
69.
Ketkar
S
,
Verdoni
AM
,
Smith
AM
, et al
.
Remethylation of Dnmt3a-/- hematopoietic cells is associated with partial correction of gene dysregulation and reduced myeloid skewing
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
6
):
3123
-
3134
.
70.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
71.
Haas
S
,
Hansson
J
,
Klimmeck
D
, et al
.
Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors
.
Cell Stem Cell
.
2015
;
17
(
4
):
422
-
434
.
72.
Zhang
X
,
Su
J
,
Jeong
M
, et al
.
DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells
.
Nat Genet
.
2016
;
48
(
9
):
1014
-
1023
.
73.
Sweegers
MG
,
Zalpuri
S
,
Quee
FA
, et al
.
Ferritin measurement in donors—effectiveness of iron monitoring to diminish iron deficiency and low haemoglobin in whole blood donors (FIND’EM): study protocol for a stepped wedge cluster randomised trial
.
Trials
.
2020
;
21
(
1
):
823
.
74.
Cable
RG
,
Glynn
SA
,
Kiss
JE
, et al
.
Iron deficiency in blood donors: the REDS-II donor iron status evaluation (RISE) study
.
Transfusion (Paris)
.
2012
;
52
(
4
):
702
-
711
.
75.
Smith
GA
,
Fisher
SA
,
Doree
C
,
Di Angelantonio
E
,
Roberts
DJ
.
Oral or parenteral iron supplementation to reduce deferral, iron deficiency and/or anaemia in blood donors
.
Cochrane Database Syst Rev
.
2014
;
2014
(
7
):
CD009532
.
76.
Brittenham
GM
.
Iron deficiency in whole blood donors
.
Transfusion
.
2011
;
51
(
3
):
458
-
461
.
77.
Wilkinson
AC
,
Ishida
R
,
Nakauchi
H
,
Yamazaki
S
.
Long-term ex vivo expansion of mouse hematopoietic stem cells
.
Nat Protoc
.
2020
;
15
(
2
):
628
-
648
.
78.
Sandoval
JE
,
Huang
YH
,
Muise
A
,
Goodell
MA
,
Reich
NO
.
Mutations in the DNMT3A DNA methyltransferase in acute myeloid leukemia patients cause both loss and gain of function and differential regulation by protein partners
.
J Biol Chem
.
2019
;
294
(
13
):
4898
-
4910
.
You do not currently have access to this content.
Sign in via your Institution