• DOT1L and EZH2 inhibition show synergistic antitumor effects in preclinical models of B-cell lymphoma.

  • Combined treatment with DOT1L and EZH2 inhibitors induced plasma cell differentiation in B-cell lymphoma.

Abstract

Despite the approval of several new treatments for patients with B-cell lymphoma, there is still a large unmet need. Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) are the 2 most common B-cell lymphoma subtypes, accounting for ∼50% of all cases. EZH2 heterozygous gain-of-function somatic driver mutations are frequently found in germinal center B-cell DLBCLs and FLs. An EZH2 inhibitor has shown durable responses in patients with relapsed or refractory FL, however a considerable fraction of the patients did not show an objective response. To identify alternative therapeutic strategies, we performed CRISPR/Cas9 knockout screens in B-cell lymphoma cells treated with or without an EZH2 inhibitor. This led to the identification of the histone methyltransferase DOT1L as a potential therapeutic target. Specifically, we showed that an EZH2 inhibitor synergizes with a DOT1L inhibitor in a panel of B-cell lymphoma cell lines regardless of the EZH2 mutation status. Mechanistically, we demonstrated that the 2 inhibitors cooperatively suppress DOT1L-regulated cell cycle genes, upregulate genes involved in interferon signaling, including antigen presenting genes, and ultimately drive B-cell differentiation by derepressing EZH2-regulated plasma cell signature genes. Furthermore, we demonstrated the effectiveness of this epigenetic combination strategy in a xenograft model, which led to significant abrogation of tumor growth. Together, our studies provide preclinical proof-of-concept for an epigenetic combination therapy to overcome resistance and improve durability of response for the treatment of B-cell lymphoma, warranting clinical investigation and illustrating an important convergent role of EZH2 and DOT1L in B-cell lymphomagenesis.

1.
Thandra
KC
,
Barsouk
A
,
Saginala
K
,
Padala
SA
,
Barsouk
A
,
Rawla
P
.
Epidemiology of non-Hodgkin's lymphoma
.
Med Sci
.
2021
;
9
(
1
):
5
.
2.
Morschhauser
F
,
Tilly
H
,
Chaidos
A
, et al
.
Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial
.
Lancet Oncol
.
2020
;
21
(
11
):
1433
-
1442
.
3.
Morschhauser
F
,
Salles
G
,
Batlevi
CL
, et al
.
Taking the EZ way: targeting enhancer of zeste homolog 2 in B-cell lymphomas
.
Blood Rev
.
2022
;
56
:
100988
.
4.
Italiano
A
,
Soria
JC
,
Toulmonde
M
, et al
.
Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study
.
Lancet Oncol
.
2018
;
19
(
5
):
649
-
659
.
5.
McCabe
MT
,
Graves
AP
,
Ganji
G
, et al
.
Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
8
):
2989
-
2994
.
6.
Beguelin
W
,
Popovic
R
,
Teater
M
, et al
.
EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation
.
Cancer Cell
.
2013
;
23
(
5
):
677
-
692
.
7.
Laugesen
A
,
Hojfeldt
JW
,
Helin
K
.
Molecular mechanisms directing PRC2 recruitment and H3K27 methylation
.
Mol Cell
.
2019
;
74
(
1
):
8
-
18
.
8.
Beguelin
W
,
Rivas
MA
,
Calvo Fernandez
MT
, et al
.
EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop
.
Nat Commun
.
2017
;
8
(
1
):
877
.
9.
Beguelin
W
,
Teater
M
,
Gearhart
MD
, et al
.
EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis
.
Cancer Cell
.
2016
;
30
(
2
):
197
-
213
.
10.
Caganova
M
,
Carrisi
C
,
Varano
G
, et al
.
Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis
.
J Clin Invest
.
2013
;
123
(
12
):
5009
-
5022
.
11.
Beguelin
W
,
Teater
M
,
Meydan
C
, et al
.
Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response
.
Cancer Cell
.
2020
;
37
(
5
):
655
-
673.e11
.
12.
Bodor
C
,
Grossmann
V
,
Popov
N
, et al
.
EZH2 mutations are frequent and represent an early event in follicular lymphoma
.
Blood
.
2013
;
122
(
18
):
3165
-
3168
.
13.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published correction appears in Nat Med. 2018;24(8):1290-1291]
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
14.
McCabe
MT
,
Ott
HM
,
Ganji
G
, et al
.
EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations
.
Nature
.
2012
;
492
(
7427
):
108
-
112
.
15.
Feng
Q
,
Wang
H
,
Ng
HH
, et al
.
Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain
.
Curr Biol
.
2002
;
12
(
12
):
1052
-
1058
.
16.
van Leeuwen
F
,
Gafken
PR
,
Gottschling
DE
.
Dot1p modulates silencing in yeast by methylation of the nucleosome core
.
Cell
.
2002
;
109
(
6
):
745
-
756
.
17.
Ng
HH
,
Ciccone
DN
,
Morshead
KB
,
Oettinger
MA
,
Struhl
K
.
Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation
.
Proc Natl Acad Sci U S A
.
2003
;
100
(
4
):
1820
-
1825
.
18.
Okada
Y
,
Feng
Q
,
Lin
Y
, et al
.
hDOT1L links histone methylation to leukemogenesis
.
Cell
.
2005
;
121
(
2
):
167
-
178
.
19.
Schubeler
D
,
MacAlpine
DM
,
Scalzo
D
, et al
.
The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote
.
Genes Dev
.
2004
;
18
(
11
):
1263
-
1271
.
20.
Wang
Z
,
Zang
C
,
Rosenfeld
JA
, et al
.
Combinatorial patterns of histone acetylations and methylations in the human genome
.
Nat Genet
.
2008
;
40
(
7
):
897
-
903
.
21.
Aslam
MA
,
Alemdehy
MF
,
Kwesi-Maliepaard
EM
, et al
.
Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation
.
EMBO Rep
.
2021
;
22
(
2
):
e51184
.
22.
Kealy
L
,
Di Pietro
A
,
Hailes
L
, et al
.
The histone methyltransferase DOT1L is essential for humoral immune responses
.
Cell Rep
.
2020
;
33
(
11
):
108504
.
23.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
24.
Muller
I
,
Moroni
AS
,
Shlyueva
D
, et al
.
MPP8 is essential for sustaining self-renewal of ground-state pluripotent stem cells
.
Nat Commun
.
2021
;
12
(
1
):
3034
.
25.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(
3
):
564
-
576.e16
.
26.
Stein
EM
,
Garcia-Manero
G
,
Rizzieri
DA
, et al
.
The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia
.
Blood
.
2018
;
131
(
24
):
2661
-
2669
.
27.
Basavapathruni
A
,
Olhava
EJ
,
Daigle
SR
, et al
.
Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor
.
Biopharm Drug Dispos
.
2014
;
35
(
4
):
237
-
252
.
28.
Daigle
SR
,
Olhava
EJ
,
Therkelsen
CA
, et al
.
Potent inhibition of DOT1L as treatment of MLL-fusion leukemia
.
Blood
.
2013
;
122
(
6
):
1017
-
1025
.
29.
Klaus
CR
,
Iwanowicz
D
,
Johnston
D
, et al
.
DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells
.
J Pharmacol Exp Ther
.
2014
;
350
(
3
):
646
-
656
.
30.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
31.
Daigle
SR
,
Olhava
EJ
,
Therkelsen
CA
, et al
.
Potent inhibition of DOT1L as treatment of MLL-fusion leukemia
.
Blood
.
2013
;
122
(
6
):
1017
-
1025
.
32.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
43
):
15545
-
15550
.
33.
Hanzelmann
S
,
Castelo
R
,
Guinney
J
.
GSVA: gene set variation analysis for microarray and RNA-seq data
.
BMC Bioinf
.
2013
;
14
:
7
.
34.
Burr
ML
,
Sparbier
CE
,
Chan
KL
, et al
.
An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer
.
Cancer Cell
.
2019
;
36
(
4
):
385
-
401.e8
.
35.
Zhou
L
,
Mudianto
T
,
Ma
X
,
Riley
R
,
Uppaluri
R
.
Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer
.
Clin Cancer Res
.
2020
;
26
(
1
):
290
-
300
.
36.
Ennishi
D
,
Takata
K
,
Beguelin
W
, et al
.
Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition
.
Cancer Discov
.
2019
;
9
(
4
):
546
-
563
.
37.
Shaffer
AL
,
Lin
KI
,
Kuo
TC
, et al
.
Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program
.
Immunity
.
2002
;
17
(
1
):
51
-
62
.
38.
Mihalcik
SA
,
Huddleston
PM
,
Wu
X
,
Jelinek
DF
.
The structure of the TNFRSF13C promoter enables differential expression of BAFF-R during B cell ontogeny and terminal differentiation
.
J Immunol
.
2010
;
185
(
2
):
1045
-
1054
.
39.
Kim
W
,
Choi
M
,
Kim
JE
.
The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle
.
Cell Cycle
.
2014
;
13
(
5
):
726
-
738
.
40.
Yang
L
,
Lei
Q
,
Li
L
,
Yang
J
,
Dong
Z
,
Cui
H
.
Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer
.
Clin Epigenetics
.
2022
;
14
(
1
):
67
.
41.
Macrae
TA
,
Fothergill-Robinson
J
,
Ramalho-Santos
M
.
Regulation, functions and transmission of bivalent chromatin during mammalian development
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
1
):
6
-
26
.
42.
Isshiki
Y
,
Chen
X
,
Teater
M
, et al
.
EZH2 inhibition enhances T cell immunotherapies by inducing lymphoma immunogenicity and improving T cell function
.
Cancer Cell
.
2025
;
43
(
1
):
49
-
68.e9
.
43.
Herviou
L
,
Jourdan
M
,
Martinez
AM
,
Cavalli
G
,
Moreaux
J
.
EZH2 is overexpressed in transitional preplasmablasts and is involved in human plasma cell differentiation
.
Leukemia
.
2019
;
33
(
8
):
2047
-
2060
.
44.
Duan
M
,
Nguyen
DC
,
Joyner
CJ
, et al
.
Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses
.
Cell Rep
.
2023
;
42
(
7
):
112682
.
45.
Perner
F
,
Gadrey
JY
,
Xiong
Y
, et al
.
Novel inhibitors of the histone methyltransferase DOT1L show potent antileukemic activity in patient-derived xenografts
.
Blood
.
2020
;
136
(
17
):
1983
-
1988
.
46.
Stauffer
F
,
Weiss
A
,
Scheufler
C
, et al
.
New potent DOT1L inhibitors for in vivo evaluation in mouse
.
ACS Med Chem Lett
.
2019
;
10
(
12
):
1655
-
1660
.
47.
Bracken
AP
,
Pasini
D
,
Capra
M
,
Prosperini
E
,
Colli
E
,
Helin
K
.
EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer [published correction appears in EMBO J. 2024;43(5):886]
.
EMBO J
.
2003
;
22
(
20
):
5323
-
5335
.
48.
Piunti
A
,
Meghani
K
,
Yu
Y
, et al
.
Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma
.
Sci Adv
.
2022
;
8
(
40
):
eabo8043
.
49.
Huang
J
,
Zhang
J
,
Guo
Z
, et al
.
Easy or not-the advances of EZH2 in regulating T cell development, differentiation, and activation in antitumor immunity
.
Front Immunol
.
2021
;
12
:
741302
.
50.
Kealy
L
,
Runting
J
,
Thiele
D
,
Scheer
S
.
An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system
.
Front Immunol
.
2024
;
15
:
1385319
.
51.
Zeng
J
,
Zhang
J
,
Sun
Y
, et al
.
Targeting EZH2 for cancer therapy: from current progress to novel strategies
.
Eur J Med Chem
.
2022
;
238
:
114419
.
You do not currently have access to this content.
Sign in via your Institution