• High-dimensional T-cell profiling reveals highly divergent immune ages in older, nonfit patients with newly diagnosed MM.

  • Immune age outperforms calendar age in predicting survival of older, nonfit newly diagnosed patients receiving daratumumab-based therapy.

Abstract

Immunotherapy has transformed the treatment landscape of multiple myeloma (MM), a hematological cancer predominantly affecting older individuals. Yet, whether immune aging, shaped by intrinsic aging processes, genetics, and external factors, affects treatment efficacy remains unclear. To address this, we investigated the influence of age on the immune system in patients with MM and explored whether immune aging associates with clinical outcomes in older patients. Using flow cytometry, we conducted high-dimensional profiling of T cells and natural killer cells in peripheral blood and bone marrow samples of 124 older (>65 years) and 145 younger (≤65 years) patients with newly diagnosed MM (ages 34-92 years) enrolled in the HOVON-143 and CASSIOPEIA/HOVON-131 trials. On average, older patients exhibited a more activated, differentiated, and senescent T-cell compartment than younger patients. Nonetheless, substantial interindividual variation in T-cell subset frequencies within both age groups indicated that calendar age inadequately reflects an individual’s immune status. We therefore developed an immune clock on high-dimensional phenotypic T-cell data to quantify each patient’s “immune age,” revealing substantial variation in immune ages among patients of similar calendar age. Importantly, immune age appeared a stronger predictor of clinical outcomes than calendar age in older, nonfit patients with newly diagnosed MM receiving daratumumab-ixazomib-dexamethasone, even after adjusting for frailty and other established risk factors. Overall, these findings highlight immune age as a clinically relevant composite metric that better reflects a patient’s immune status than their calendar age. Validating this methodology in other immunotherapy settings may improve our ability to predict immunotherapy efficacy in older patients with MM or other hematological cancers.

1.
SEER
.
Cancer stat facts: myeloma
. Accessed 9 February 2024. https://seer.cancer.gov/statfacts/html/mulmy.html.
2.
Shah
UA
,
Mailankody
S
.
Emerging immunotherapies in multiple myeloma
.
BMJ
.
2020
;
370
:
m3176
.
3.
Attal
M
,
Lauwers-Cances
V
,
Marit
G
, et al
.
Lenalidomide maintenance after stem-cell transplantation for multiple myeloma
.
N Engl J Med
.
2012
;
366
(
19
):
1782
-
1791
.
4.
Jackson
GH
,
Davies
FE
,
Pawlyn
C
, et al
.
Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): a multicentre, open-label, randomised, phase 3 trial
.
Lancet Oncol
.
2019
;
20
(
1
):
57
-
73
.
5.
Lonial
S
,
Popat
R
,
Hulin
C
, et al
.
Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial
.
Lancet Haematol
.
2022
;
9
(
11
):
E822
-
E832
.
6.
Richardson
PG
,
Trudel
S
,
Popat
R
, et al
.
Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2023
;
389
(
11
):
1009
-
1022
.
7.
Lokhorst
HM
,
Plesner
T
,
Laubach
JP
, et al
.
Targeting CD38 with daratumumab monotherapy in multiple myeloma
.
N Engl J Med
.
2015
;
373
(
13
):
1207
-
1219
.
8.
Facon
T
,
Kumar
S
,
Plesner
T
, et al
.
Daratumumab plus lenalidomide and dexamethasone for untreated myeloma
.
N Engl J Med
.
2019
;
380
(
22
):
2104
-
2115
.
9.
Sonneveld
P
,
Dimopoulos
MA
,
Boccadoro
M
, et al
.
Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2024
;
390
(
4
):
301
-
313
.
10.
Attal
M
,
Richardson
PG
,
Rajkumar
SV
, et al
.
Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10214
):
2096
-
2107
.
11.
Lonial
S
,
Lee
HC
,
Badros
A
, et al
.
Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study
.
Lancet Oncol
.
2020
;
21
(
2
):
207
-
221
.
12.
Dimopoulos
MA
,
Beksac
M
,
Pour
L
, et al
.
Belantamab mafodotin, pomalidomide, and dexamethasone in multiple myeloma
.
N Engl J Med
.
2024
;
391
(
5
):
408
-
421
.
13.
Trudel
S
,
McCurdy
A
,
Louzada
ML
, et al
.
Belantamab mafodotin, pomalidomide and dexamethasone in refractory multiple myeloma: a phase 1/2 trial
.
Nat Med
.
2024
;
30
(
2
):
543
-
551
.
14.
Hungria
V
,
Robak
P
,
Hus
M
, et al
.
Belantamab mafodotin, bortezomib, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2024
;
391
(
5
):
393
-
407
.
15.
van de Donk
N
,
Zweegman
S
.
BCMA-directed therapy for early relapsed and/or refractory multiple myeloma
.
Nat Rev Clin Oncol
.
2024
;
21
(
10
):
707
-
708
.
16.
Chari
A
,
Minnema
MC
,
Berdeja
JG
, et al
.
Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma
.
N Engl J Med
.
2022
;
387
(
24
):
2232
-
2244
.
17.
Moreau
P
,
Garfall
AL
,
van de Donk
NWCJ
, et al
.
Teclistamab in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2022
;
387
(
6
):
495
-
505
.
18.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
19.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
20.
Lesokhin
AM
,
Tomasson
MH
,
Arnulf
B
, et al
.
Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results
.
Nat Med
.
2023
;
29
(
9
):
2259
-
2267
.
21.
Friedrich
MJ
,
Neri
P
,
Kehl
N
, et al
.
The pre-existing T cell landscape determines the response to bispecific T cell engagers in multiple myeloma patients
.
Cancer Cell
.
2023
;
41
(
4
):
711
-
725.e6
.
22.
Cortes-Selva
D
,
Perova
T
,
Skerget
S
, et al
.
Correlation of immune fitness with response to teclistamab in relapsed/refractory multiple myeloma in MajesTEC-1
.
Blood
.
2024
;
144
(
6
):
615
-
628
.
23.
Verkleij
CPM
,
O’Neill
CA
,
Broekmans
MEC
, et al
.
T-cell characteristics impact response and resistance to T-cell-redirecting bispecific antibodies in multiple myeloma
.
Clin Cancer Res
.
2024
;
30
(
14
):
3006
-
3022
.
24.
Dhodapkar
KM
,
Cohen
AD
,
Kaushal
A
, et al
.
Changes in bone marrow tumor and immune cells correlate with durability of remissions following BCMA CAR T therapy in myeloma
.
Blood Cancer Discov
.
2022
;
3
(
6
):
490
-
501
.
25.
Lin
Y
,
Raje
NS
,
Berdeja
JG
, et al
.
Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial
.
Nat Med
.
2023
;
29
(
9
):
2286
-
2294
.
26.
Maura
F
,
Boyle
EM
,
Coffey
D
, et al
.
Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens
.
Nat Cancer
.
2023
;
4
(
12
):
1660
-
1674
.
27.
Sklavenitis-Pistofidis
R
,
Aranha
MP
,
Redd
RA
, et al
.
Immune biomarkers of response to immunotherapy in patients with high-risk smoldering myeloma
.
Cancer Cell
.
2022
;
40
(
11
):
1358
-
1373.e8
.
28.
Coffey
DG
,
Maura
F
,
Gonzalez-Kozlova
E
, et al
.
Immunophenotypic correlates of sustained MRD negativity in patients with multiple myeloma
.
Nat Commun
.
2023
;
14
(
1
):
5335
.
29.
Garfall
AL
,
Dancy
EK
,
Cohen
AD
, et al
.
T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma
.
Blood Adv
.
2019
;
3
(
19
):
2812
-
2815
.
30.
Verkleij
CPM
,
Frerichs
KA
,
Broekmans
MEC
, et al
.
NK cell phenotype is associated with response and resistance to daratumumab in relapsed/refractory multiple myeloma
.
Hemasphere
.
2023
;
7
(
5
):
e881
.
31.
Caruso
C
,
Ligotti
ME
,
Accardi
G
,
Aiello
A
,
Candore
G
.
An immunologist's guide to immunosenescence and its treatment
.
Expert Rev Clin Immunol
.
2022
;
18
(
9
):
961
-
981
.
32.
Mogilenko
DA
,
Shchukina
I
,
Artyomov
MN
.
Immune ageing at single-cell resolution
.
Nat Rev Immunol
.
2022
;
22
(
8
):
484
-
498
.
33.
Jain
S
,
Self
WH
,
Wunderink
RG
, et al
.
Community-acquired pneumonia requiring hospitalization among U.S. adults
.
N Engl J Med
.
2015
;
373
(
5
):
415
-
427
.
34.
Van Kerkhove
MD
,
Vandemaele
KAH
,
Shinde
V
, et al
.
Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis
.
PLoS Med
.
2011
;
8
(
7
):
e1001053
.
35.
Dirmesropian
S
,
Liu
B
,
Wood
JG
, et al
.
Pneumonia hospitalisation and case-fatality rates in older Australians with and without risk factors for pneumococcal disease: implications for vaccine policy
.
Epidemiol Infect
.
2019
;
147
:
e118
.
36.
Santesmasses
D
,
Castro
JP
,
Zenin
AA
, et al
.
COVID-19 is an emergent disease of aging
.
Aging Cell
.
2020
;
19
(
10
):
e13230
.
37.
Laupland
KB
,
Pasquill
K
,
Dagasso
G
,
Parfitt
EC
,
Steele
L
,
Schonheyder
HC
.
Population-based risk factors for community-onset bloodstream infections
.
Eur J Clin Microbiol Infect Dis
.
2020
;
39
(
4
):
753
-
758
.
38.
Gardner
ID
.
The effect of aging on susceptibility to infection
.
Rev Infect Dis
.
1980
;
2
(
5
):
801
-
810
.
39.
Nikolich-Žugich
J
.
The twilight of immunity: emerging concepts in aging of the immune system
.
Nat Immunol
.
2018
;
19
(
1
):
10
-
19
.
40.
Ademokun
A
,
Wu
YC
,
Martin
V
, et al
.
Vaccination-induced changes in human B-cell repertoire and pneumococcal IgM and IgA antibody at different ages
.
Aging Cell
.
2011
;
10
(
6
):
922
-
930
.
41.
Schenkein
JG
,
Park
S
,
Nahm
MH
.
Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency
.
Vaccine
.
2008
;
26
(
43
):
5521
-
5526
.
42.
Sasaki
S
,
Sullivan
M
,
Narvaez
CF
, et al
.
Limited efficacy of inactivated influenza vaccine in elderly individuals is associated with decreased production of vaccine-specific antibodies
.
J Clin Invest
.
2011
;
121
(
8
):
3109
-
3119
.
43.
Li
S
,
Sullivan
NL
,
Rouphael
N
, et al
.
Metabolic phenotypes of response to vaccination in humans
.
Cell
.
2017
;
169
(
5
):
862
-
877.e17
.
44.
Tsang
JS
.
Utilizing population variation, vaccination, and systems biology to study human immunology
.
Trends Immunol
.
2015
;
36
(
8
):
479
-
493
.
45.
Allen
JC
,
Toapanta
FR
,
Chen
W
,
Tennant
SM
.
Understanding immunosenescence and its impact on vaccination of older adults
.
Vaccine
.
2020
;
38
(
52
):
8264
-
8272
.
46.
Goronzy
JJ
,
Weyand
CM
.
Understanding immunosenescence to improve responses to vaccines
.
Nat Immunol
.
2013
;
14
(
5
):
428
-
436
.
47.
McLean
HQ
,
Thompson
MG
,
Sundaram
ME
, et al
.
Influenza vaccine effectiveness in the United States during 2012-2013: variable protection by age and virus type
.
J Infect Dis
.
2015
;
211
(
10
):
1529
-
1540
.
48.
Siegel
RL
,
Miller
KD
,
Wagle
NS
,
Jemal
A
.
Cancer statistics, 2023
.
CA Cancer J Clin
.
2023
;
73
(
1
):
17
-
48
.
49.
Klein
SL
,
Flanagan
KL
.
Sex differences in immune responses
.
Nat Rev Immunol
.
2016
;
16
(
10
):
626
-
638
.
50.
Márquez
EJ
,
Chung
CH
,
Marches
R
, et al
.
Sexual-dimorphism in human immune system aging
.
Nat Commun
.
2020
;
11
(
1
):
751
.
51.
Orrù
V
,
Steri
M
,
Sole
G
, et al
.
Genetic variants regulating immune cell levels in health and disease
.
Cell
.
2013
;
155
(
1
):
242
-
256
.
52.
Liston
A
,
Humblet-Baron
S
,
Duffy
D
,
Goris
A
.
Human immune diversity: from evolution to modernity
.
Nat Immunol
.
2021
;
22
(
12
):
1479
-
1489
.
53.
Brodin
P
,
Jojic
V
,
Gao
T
, et al
.
Variation in the human immune system is largely driven by non-heritable influences
.
Cell
.
2015
;
160
(
1-2
):
37
-
47
.
54.
Brodin
P
,
Davis
MM
.
Human immune system variation
.
Nat Rev Immunol
.
2017
;
17
(
1
):
21
-
29
.
55.
Kaczorowski
KJ
,
Shekhar
K
,
Nkulikiyimfura
D
, et al
.
Continuous immunotypes describe human immune variation and predict diverse responses
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
30
):
E6097
-
E6106
.
56.
Carr
EJ
,
Dooley
J
,
Garcia-Perez
JE
, et al
.
The cellular composition of the human immune system is shaped by age and cohabitation
.
Nat Immunol
.
2016
;
17
(
4
):
461
-
468
.
57.
De Jager
PL
,
Hacohen
N
,
Mathis
D
,
Regev
A
,
Stranger
BE
,
Benoist
C
.
ImmVar project: insights and design considerations for future studies of "healthy" immune variation
.
Semin Immunol
.
2015
;
27
(
1
):
51
-
57
.
58.
Akhtar
OS
,
Sheeba
BA
,
Azad
F
, et al
.
Safety and efficacy of anti-BCMA CAR-T cell therapy in older adults with multiple myeloma: a systematic review and meta-analysis
.
J Geriatr Oncol
.
2024
;
15
(
2
):
101628
.
59.
Dieterle
MP
,
Mostufi-Zadeh-Haghighi
G
,
Kus
JW
, et al
.
Safe and successful teclistamab treatment in very elderly multiple myeloma (MM) patients: a case report and experience from a total of three octogenarians
.
Ann Hematol
.
2023
;
102
(
12
):
3639
-
3641
.
60.
Gagelmann
N
,
Dima
D
,
Merz
M
, et al
.
Development and validation of a prediction model of outcome after B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in relapsed/refractory multiple myeloma
.
J Clin Oncol
.
2024
;
42
(
14
):
1665
-
1675
.
61.
Sidana
S
,
Patel
KK
,
Peres
LC
, et al
.
Safety and efficacy of standard-of-care ciltacabtagene autoleucel for relapsed/refractory multiple myeloma
.
Blood
.
2025
;
145
(
1
):
85
-
97
.
62.
Stege
CAM
,
Nasserinejad
K
,
van der Spek
E
, et al
.
Ixazomib, daratumumab, and low-dose dexamethasone in frail patients with newly diagnosed multiple myeloma: the Hovon 143 study
.
J Clin Oncol
.
2021
;
39
(
25
):
2758
-
2767
.
63.
Groen
K
,
Stege
CAM
,
Nasserinejad
K
, et al
.
Ixazomib, daratumumab and low-dose dexamethasone in intermediate-fit patients with newly diagnosed multiple myeloma: an open-label phase 2 trial
.
EClinicalMedicine
.
2023
;
63
:
102167
.
64.
Moreau
P
,
Attal
M
,
Hulin
C
, et al
.
Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10192
):
29
-
38
.
65.
Emmaneel
A
,
Quintelier
K
,
Sichien
D
, et al
.
PeacoQC: peak-based selection of high quality cytometry data
.
Cytometry A
.
2022
;
101
(
4
):
325
-
338
.
66.
Van Gassen
S
,
Callebaut
B
,
Van Helden
MJ
, et al
.
FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data
.
Cytometry A
.
2015
;
87
(
7
):
636
-
645
.
67.
Friedman
J
,
Hastie
T
,
Tibshirani
R
.
Regularization paths for generalized linear models via coordinate descent
.
J Stat Softw
.
2010
;
33
(
1
):
1
-
22
.
68.
de Lange
AMG
,
Cole
JH
.
Commentary: correction procedures in brain-age prediction
.
Neuroimage Clin
.
2020
;
26
:
102229
.
69.
Denz
R
,
Timmesfeld
N
.
Visualizing the (causal) effect of a continuous variable on a time-to-event outcome
.
Epidemiology
.
2023
;
34
(
5
):
652
-
660
.
70.
Lucca
LE
.
Immunotherapy: the teclistamab fitness test
.
Blood
.
2024
;
144
(
6
):
591
-
592
.
71.
Naylor
K
,
Li
G
,
Vallejo
AN
, et al
.
The influence of age on T cell generation and TCR diversity
.
J Immunol
.
2005
;
174
(
11
):
7446
-
7452
.
72.
Nasi
M
,
Troiano
L
,
Lugli
E
, et al
.
Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life
.
Aging Cell
.
2006
;
5
(
2
):
167
-
175
.
73.
Weiskopf
D
,
Weinberger
B
,
Grubeck-Loebenstein
B
.
The aging of the immune system
.
Transpl Int
.
2009
;
22
(
11
):
1041
-
1050
.
74.
den Braber
I
,
Mugwagwa
T
,
Vrisekoop
N
, et al
.
Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans
.
Immunity
.
2012
;
36
(
2
):
288
-
297
.
75.
Johnson
PL
,
Yates
AJ
,
Goronzy
JJ
,
Antia
R
.
Peripheral selection rather than thymic involution explains sudden contraction in naive CD4 T-cell diversity with age
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
52
):
21432
-
21437
.
76.
Ludwig
H
.
Daratumumab: a game changer in myeloma therapy
.
Lancet Haematol
.
2020
;
7
(
6
):
e426
-
e427
.
77.
Mohyuddin
GR
,
Mian
H
.
Daratumumab in newly diagnosed MM - incorporating lessons learnt from CASSIOPEIA, MAIA and beyond
.
Nat Rev Clin Oncol
.
2022
;
19
(
1
):
3
-
4
.
78.
Alpert
A
,
Pickman
Y
,
Leipold
M
, et al
.
A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring
.
Nat Med
.
2019
;
25
(
3
):
487
-
495
.
79.
Sayed
N
,
Huang
Y
,
Nguyen
K
, et al
.
An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging
.
Nat Aging
.
2021
;
1
:
598
-
615
.
80.
Krejcik
J
,
Casneuf
T
,
Nijhof
IS
, et al
.
Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
.
Blood
.
2016
;
128
(
3
):
384
-
394
.
81.
Usmani
SZ
,
Khan
I
,
Chiu
C
, et al
.
Deep sustained response to daratumumab monotherapy associated with T-cell expansion in triple refractory myeloma
.
Exp Hematol Oncol
.
2018
;
7
:
3
.
82.
Casneuf
T
,
Adams
HC
,
van de Donk
NWCJ
, et al
.
Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab
.
Leukemia
.
2021
;
35
(
2
):
573
-
584
.
83.
Fahy
GM
,
Brooke
RT
,
Watson
JP
, et al
.
Reversal of epigenetic aging and immunosenescent trends in humans
.
Aging Cell
.
2019
;
18
(
6
):
e13028
.
84.
Mannick
JB
,
Morris
M
,
Hockey
HUP
, et al
.
TORC1 inhibition enhances immune function and reduces infections in the elderly
.
Sci Transl Med
.
2018
;
10
(
449
):
eaaq1564
.
85.
Girotra
M
,
Chiang
YH
,
Charmoy
M
, et al
.
Induction of mitochondrial recycling reverts age-associated decline of the hematopoietic and immune systems
.
Nat Aging
.
2023
;
3
(
9
):
1057
-
1066
.
86.
Sportès
C
,
Hakim
FT
,
Memon
SA
, et al
.
Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets
.
J Exp Med
.
2008
;
205
(
7
):
1701
-
1714
.
87.
Ross
JB
,
Myers
LM
,
Noh
JJ
, et al
.
Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity
.
Nature
.
2024
;
628
(
8006
):
162
-
170
.
88.
Florian
MC
,
Leins
H
,
Gobs
M
, et al
.
Inhibition of Cdc42 activity extends lifespan and decreases circulating inflammatory cytokines in aged female C57BL/6 mice
.
Aging Cell
.
2020
;
19
(
9
):
e13208
.
89.
Duggal
NA
,
Pollock
RD
,
Lazarus
NR
,
Harridge
S
,
Lord
JM
.
Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood
.
Aging Cell
.
2018
;
17
(
2
):
e12750
.
90.
Spielmann
G
,
McFarlin
BK
,
O'Connor
DP
,
Smith
PJW
,
Pircher
H
,
Simpson
RJ
.
Aerobic fitness is associated with lower proportions of senescent blood T-cells in man
.
Brain Behav Immun
.
2011
;
25
(
8
):
1521
-
1529
.
91.
Krüger
K
,
Alack
K
,
Ringseis
R
, et al
.
Apoptosis of T-cell subsets after acute high-intensity interval exercise
.
Med Sci Sports Exerc
.
2016
;
48
(
10
):
2021
-
2029
.
92.
de Araújo
AL
,
Silva
LCR
,
Fernandes
JR
, et al
.
Elderly men with moderate and intense training lifestyle present sustained higher antibody responses to influenza vaccine
.
Age (Dordr)
.
2015
;
37
(
6
):
105
.
93.
Woods
JA
,
Keylock
KT
,
Lowder
T
, et al
.
Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial
.
J Am Geriatr Soc
.
2009
;
57
(
12
):
2183
-
2191
.
94.
Kohut
ML
,
Arntson
BA
,
Lee
W
, et al
.
Moderate exercise improves antibody response to influenza immunization in older adults
.
Vaccine
.
2004
;
22
(
17-18
):
2298
-
2306
.
95.
Messaoudi
I
,
Warner
J
,
Fischer
M
, et al
.
Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates
.
Proc Natl Acad Sci U S A
.
2006
;
103
(
51
):
19448
-
19453
.
96.
Bruins
W
,
Duetz
C
,
Groen
K
, et al
.
S187: Immunological aging has a negative impact on clinical outcome in elderly multiple myeloma patients [abstract]
.
HemaSphere
.
2023
;
7
(
S3
):
e28577c3
.
You do not currently have access to this content.
Sign in via your Institution