• Runx2-deficient HSCs have a fitness advantage ex vivo and in vivo via increased self-renewal.

  • Runx2 is necessary for normal T-cell commitment.

Abstract

Self-renewing multipotent hematopoietic stem cells (HSCs) are a rare but important cell population that can reconstitute the entire blood and immune system after transplantation. Due to their rarity, it has been difficult to comprehensively study the mechanisms regulating HSC activity. However, recent improvements in hematopoietic stem and progenitor cell (HSPC) culture methods using polyvinyl alcohol–based media now facilitate large-scale ex vivo HSC expansion. Here, we performed a genome-wide CRISPR knockout (KO) screen in primary mouse HSPCs to discover novel regulators of ex vivo expansion. The screen identified Runx2 as a strong negative regulator of HSC expansion, which we validated using ex vivo and in vivo assays. Loss of Runx2 increased the frequency of immunophenotypic HSCs in HSPC cultures by approximately threefold. After expansion, these Runx2-KO HSCs engrafted at approximately fivefold higher levels in transplantation assays. Noncultured Runx2-KO HSCs also displayed enhanced reconstitution potential, but loss of Runx2 did not alter blood parameters. Notably, however, T-cell reconstitution was diminished from Runx2-KO HSCs, and we further validated an additional role for Runx2 in T-cell commitment using ex vivo and in vivo assays. In summary, we have identified a multifaceted role for Runx2 in HSCs, as a negative regulator of HSC self-renewal and as a facilitator of T-cell commitment. These results contribute to our understanding of the transcriptional regulation of hematopoiesis and HSC therapies.

1.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
2.
Wilkinson
AC
,
Igarashi
KJ
,
Nakauchi
H
.
Haematopoietic stem cell self-renewal in vivo and ex vivo
.
Nat Rev Genet
.
2020
;
21
(
9
):
541
-
554
.
3.
Khaddour
K
,
Hana
CK
,
Mewawalla
P
. Hematopoietic stem cell transplantation.
StatPearls
.
StatPearls Publishing
;
2022
Accessed 25 July 2025. http://www.ncbi.nlm.nih.gov/books/NBK536951/.
4.
Wilkinson
AC
,
Ishida
R
,
Kikuchi
M
, et al
.
Long-term ex vivo hematopoietic stem cell expansion affords nonconditioned transplantation
.
Nature
.
2019
;
571
(
7763
):
117
-
121
.
5.
Igarashi
KJ
,
Kucinski
I
,
Chan
YY
, et al
.
Physioxia improves the selectivity of hematopoietic stem cell expansion cultures
.
Blood Adv
.
2023
;
7
(
14
):
3366
-
3377
.
6.
Che
JLC
,
Bode
D
,
Kucinski
I
, et al
.
Identification and characterization of in vitro expanded hematopoietic stem cells
.
EMBO Rep
.
2022
;
23
(
10
):
e55502
.
7.
Becker
HJ
,
Ishida
R
,
Wilkinson
AC
, et al
.
A single cell cloning platform for gene edited functional murine hematopoietic stem cells
.
bioRxiv
.
Preprint posted online 23 March 2022
.
8.
Khoo
HM
,
Meaker
GA
,
Wilkinson
AC
.
Ex vivo expansion and genetic manipulation of mouse hematopoietic stem cells in polyvinyl alcohol-based cultures
.
J Vis Exp
.
2023
;
192
:
e64791
.
9.
Wilkinson
AC
,
Dever
DP
,
Baik
R
, et al
.
Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves sickle cell disease erythropoiesis in mice
.
Nat Commun
.
2021
;
12
(
1
):
686
.
10.
Sakurai
M
,
Ishitsuka
K
,
Ito
R
, et al
.
Chemically defined cytokine-free expansion of human haematopoietic stem cells
.
Nature
.
2023
;
615
(
7950
):
127
-
133
.
11.
de Bruijn
M
,
Dzierzak
E
.
Runx transcription factors in the development and function of the definitive hematopoietic system
.
Blood
.
2017
;
129
(
15
):
2061
-
2069
.
12.
Lacaud
G
,
Gore
L
,
Kennedy
M
, et al
.
Runx1 is essential for hematopoietic commitment at the hemangioblast stage of development in vitro
.
Blood
.
2002
;
100
(
2
):
458
-
466
.
13.
Sood
R
,
Kamikubo
Y
,
Liu
P
.
Role of RUNX1 in hematological malignancies
.
Blood
.
2017
;
129
(
15
):
2070
-
2082
.
14.
Wang
CQ
,
Motoda
L
,
Satake
M
, et al
.
Runx3 deficiency results in myeloproliferative disorder in aged mice
.
Blood
.
2013
;
122
(
4
):
562
-
566
.
15.
Meng
Y
,
Carrelha
J
,
Drissen
R
, et al
.
Epigenetic programming defines haematopoietic stem cell fate restriction
.
Nat Cell Biol
.
2023
;
25
(
6
):
812
-
822
.
16.
Kuo
YH
,
Zaidi
SK
,
Gornostaeva
S
,
Komori
T
,
Stein
GS
,
Castilla
LH
.
Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice
.
Blood
.
2009
;
113
(
14
):
3323
-
3332
.
17.
Komori
T
. Regulation of osteoblast differentiation by Runx2. In:
Choi
Y
, eds.
Osteoimmunology. Advances in Experimental Medicine and Biology
.
Springer US
;
2010
:
43
-
49
.
18.
Castilla
LH
,
Perrat
P
,
Martinez
NJ
, et al
.
Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia
.
Proc Natl Acad Sci
.
2004
;
101
(
14
):
4924
-
4929
.
19.
Sawai
CM
,
Sisirak
V
,
Ghosh
HS
, et al
.
Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells
.
J Exp Med
.
2013
;
210
(
11
):
2151
-
2159
.
20.
Qin
X
,
Jiang
Q
,
Nagano
K
, et al
.
Runx2 is essential for the transdifferentiation of chondrocytes into osteoblasts
.
PLOS Genet
.
2020
;
16
(
11
):
e1009169
.
21.
Goodwin
LO
,
Splinter
E
,
Davis
TL
, et al
.
Large-scale discovery of mouse transgenic integration sites reveals frequent structural variation and insertional mutagenesis
.
Genome Res
.
2019
;
29
(
3
):
494
-
505
.
22.
DeWeirdt
PC
,
Sangree
AK
,
Hanna
RE
, et al
.
Genetic screens in isogenic mammalian cell lines without single cell cloning
.
Nat Commun
.
2020
;
11
(
1
):
752
.
23.
Haney
MS
,
Shankar
A
,
Olender
L
, et al
.
In vivo CRISPR screening identifies SAGA complex members as key regulators of hematopoiesis
.
bioRxiv
.
Preprint posted online 19 May 2025
.
24.
Li
W
,
Xu
H
,
Xiao
T
, et al
.
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
.
Genome Biol
.
2014
;
15
(
12
):
554
.
25.
Morgens
DW
,
Wainberg
M
,
Boyle
EA
, et al
.
Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens
.
Nat Commun
.
2017
;
8
:
15178
.
26.
Hodgkins
A
,
Farne
A
,
Perera
S
, et al
.
WGE: a CRISPR database for genome engineering
.
Bioinformatics
.
2015
;
31
(
18
):
3078
-
3080
.
27.
Kaya-Okur
HS
,
Wu
SJ
,
Codomo
CA
, et al
.
CUT&Tag for efficient epigenomic profiling of small samples and single cells
.
Nat Commun
.
2019
;
10
(
1
):
1930
.
28.
Andrews
S
.
FastQC. Babraham Bioinformatics
. Accessed 22 September 2025. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
29.
Krueger
F
.
Trim Galore. Babraham Bioinformatics
. Accessed 22 September 2025. https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
30.
Langmead
B
,
Salzberg
SL
.
Fast gapped-read alignment with Bowtie 2
.
Nat Methods
.
2012
;
9
(
4
):
357
-
359
.
31.
Ramírez
F
,
Ryan
DP
,
Grüning
B
, et al
.
deepTools2: a next generation web server for deep-sequencing data analysis
.
Nucleic Acids Res
.
2016
;
44
(
W1
):
W160
-
W165
.
32.
Hentges
LD
,
Sergeant
MJ
,
Cole
CB
,
Downes
DJ
,
Hughes
JR
,
Taylor
S
.
LanceOtron: a deep learning peak caller for genome sequencing experiments
.
Bioinformatics
.
2022
;
38
(
18
):
4255
-
4263
.
33.
Bailey
TL
.
STREME: accurate and versatile sequence motif discovery
.
Bioinformatics
.
2021
;
37
(
18
):
2834
-
2840
.
34.
Gupta
S
,
Stamatoyannopoulos
JA
,
Bailey
TL
,
Noble
WS
.
Quantifying similarity between motifs
.
Genome Biol
.
2007
;
8
(
2
):
R24
.
35.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
36.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
;
30
(
7
):
923
-
930
.
37.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
38.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY
.
clusterProfiler: an R package for comparing biological themes among gene clusters
.
OMICS J Integr Biol
.
2012
;
16
(
5
):
284
-
287
.
39.
Dempster
JM
,
Rossen
J
,
Kazachkova
M
, et al
.
Extracting biological insights from the Project Achilles genome-scale CRISPR screens in cancer cell lines
.
bioRxiv
.
Preprint posted online 31 July 2019
.
40.
Pimanda
JE
,
Ottersbach
K
,
Knezevic
K
, et al
.
Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development
.
Proc Natl Acad Sci U S A
.
2007
;
104
(
45
):
17692
-
17697
.
41.
Wilkinson
AC
,
Göttgens
B
. Transcriptional regulation of haematopoietic stem cells. In:
Hime
G
,
Abud
H
, eds.
Transcriptional and Translational Regulation of Stem Cells
.
Springer
;
2013
:
187
-
212
.
42.
Yamada
Y
,
Warren
AJ
,
Dobson
C
,
Forster
A
,
Pannell
R
,
Rabbitts
TH
.
The T cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
7
):
3890
-
3895
.
43.
Abbas
HA
,
Pant
V
,
Lozano
G
.
The ups and downs of p53 regulation in hematopoietic stem cells
.
Cell Cycle
.
2011
;
10
(
19
):
3257
-
3262
.
44.
Zhang
J
,
Grindley
JC
,
Yin
T
, et al
.
PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention
.
Nature
.
2006
;
441
(
7092
):
518
-
522
.
45.
Szklarczyk
D
,
Kirsch
R
,
Koutrouli
M
, et al
.
The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest
.
Nucleic Acids Res
.
2023
;
51
(
D1
):
D638
-
D646
.
46.
Becker
HJ
,
Ishida
R
,
Wilkinson
AC
, et al
.
Controlling genetic heterogeneity in gene-edited hematopoietic stem cells by single-cell expansion
.
Cell Stem Cell
.
2023
;
30
(
7
):
987
-
1000.e8
.
47.
Matthijssens
F
,
Sharma
ND
,
Nysus
M
, et al
.
RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia
.
J Clin Invest
.
2021
;
131
(
6
):
e141566
.
48.
Essers
MAG
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNα activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
49.
Wu
H
,
Whitfield
TW
,
Gordon
JAR
, et al
.
Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis
.
Genome Biol
.
2014
;
15
(
3
):
R52
.
50.
Xiao
ZS
,
Liu
SG
,
Hinson
TK
,
Quarles
LD
.
Characterization of the upstream mouse Cbfa1/Runx2 promoter
.
J Cell Biochem
.
2001
;
82
(
4
):
647
-
659
.
51.
Xiao
ZS
,
Thomas
R
,
Hinson
TK
,
Quarles
LD
.
Genomic structure and isoform expression of the mouse, rat and human Cbfa1/Osf2 transcription factor1
.
Gene
.
1998
;
214
(
1-2
):
187
-
197
.
52.
Famili
F
,
Wiekmeijer
AS
,
Staal
FJ
.
The development of T cells from stem cells in mice and humans
.
Future Sci OA
.
2017
;
3
(
3
):
FSO186
.
53.
Porritt
HE
,
Rumfelt
LL
,
Tabrizifard
S
,
Schmitt
TM
,
Zúñiga-Pflücker
JC
,
Petrie
HT
.
Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages
.
Immunity
.
2004
;
20
(
6
):
735
-
745
.
54.
Challen
GA
,
Pietras
EM
,
Wallscheid
NC
,
Signer
RAJ
.
Simplified murine multipotent progenitor isolation scheme: Establishing a consensus approach for multipotent progenitor identification
.
Exp Hematol
.
2021
;
104
:
55
-
63
.
55.
Blyth
K
,
Cameron
ER
,
Neil
JC
.
The runx genes: gain or loss of function in cancer
.
Nat Rev Cancer
.
2005
;
5
(
5
):
376
-
387
.
56.
Blyth
K
,
Vaillant
F
,
Jenkins
A
, et al
.
Runx2 in normal tissues and cancer cells: a developing story
.
Blood Cells Mol Dis
.
2010
;
45
(
2
):
117
-
123
.
57.
Sharma
ND
,
Nickl
CC
,
Kang
H
, et al
.
RUNX2 regulates cell migration in T-cell lineage acute lymphoblastic leukemia [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
3947
.
58.
Jaruga
A
,
Hordyjewska
E
,
Kandzierski
G
,
Tylzanowski
P
.
Cleidocranial dysplasia and RUNX2-clinical phenotype–genotype correlation
.
Clin Genet
.
2016
;
90
(
5
):
393
-
402
.
59.
Shin
B
,
Hosokawa
H
,
Romero-Wolf
M
, et al
.
Runx1 and Runx3 drive progenitor to T-lineage transcriptome conversion in mouse T cell commitment via dynamic genomic site switching
.
Proc Natl Acad Sci U S A
.
2021
;
118
(
4
):
e2019655118
.
60.
Shin
B
,
Zhou
W
,
Wang
J
,
Gao
F
,
Rothenberg
EV
.
Runx factors launch T cell and innate lymphoid programs via direct and gene network-based mechanisms
.
Nat Immunol
.
2023
;
24
(
9
):
1458
-
1472
.
You do not currently have access to this content.
Sign in via your Institution