• Tet3fl/fl;CD4-Cre transplanted mice have nonpathogenic IgG1 rather than pathogenic IgG2c deposition in lungs of recipients.

  • Tet3 supports human and murine GATA3+, IL-4+ TFHs which drive pathogenic IgG2c deposition in mice with cGVHD/bronchiolitis obliterans.

Abstract

Chronic graft-versus-host disease (cGVHD) is the leading cause of morbidity and nonrelapse-associated mortality after allogeneic hematopoietic cell transplantation. Treating steroid resistant/refractory cGVHD remains challenging. Epigenetic regulators can have global transcriptional effects that control donor T-cell responses. We previously showed that inhibiting histone lysine motifs by chromatin-modifying enzymes can ameliorate murine cGVHD. Targeting donor T-cell DNA methyltransferases reduce acute GVHD. In this study, we sought to investigate the DNA demethylase ten-eleven translocase (Tet) methylcytosine dioxygenases 2 (Tet2) and 3 (Tet3) in T follicular helper cell (TFH)–dependent cGVHD. In a clinically relevant model of cGVHD that recapitulates pulmonary fibrosis from bronchiolitis obliterans, recipients of Tet2-deleted donor T cells did not have improved pulmonary function tests in contrast with the markedly improved pulmonary function in Tet3-deleted donor T cells. Tet3 deleted donor T cells did not impair TFH-dependent germinal center (GC) formation. Unexpectedly, TET3 deficiency led to elevated GATA3 (GATA-binding protein 3) expression in and interleukin-4 production by TFHs. TET3-deficient TFHs supported GC B-cell immunoglobulin (Ig) class switching to nonpathogenic IgG1 but not pathogenic IgG2c, thereby enabling mice to escape cGVHD pulmonary fibrosis. Elevated GATA3 expression and disruption of IgG2c class switching was recapitulated in an in vitro human GC culture system. These studies provide new insights into the function of Tet3 in TFH-driven immunoglobulin class switching and suggest a new approach to mitigate cGVHD.

1.
Lee
SJ
,
Klein
JP
,
Barrett
AJ
, et al
.
Severity of chronic graft-versus-host disease: association with treatment-related mortality and relapse
.
Blood
.
2002
;
100
(
2
):
406
-
414
.
2.
Socié
G
,
Stone
JV
,
Wingard
JR
, et al
.
Long-term survival and late deaths after allogeneic bone marrow transplantation. Late Effects Working Committee of the International Bone Marrow Transplant Registry
.
N Engl J Med
.
1999
;
341
(
1
):
14
-
21
.
3.
Wolff
D
,
Gerbitz
A
,
Ayuk
F
, et al
.
Consensus conference on clinical practice in chronic graft-versus-host disease (GVHD): first-line and topical treatment of chronic GVHD
.
Biol Blood Marrow Transplant
.
2010
;
16
(
12
):
1611
-
1628
.
4.
Miklos
D
,
Cutler
CS
,
Arora
M
, et al
.
Ibrutinib for chronic graft-versus-host disease after failure of prior therapy
.
Blood
.
2017
;
130
(
21
):
2243
-
2250
.
5.
Jagasia
M
,
Lazaryan
A
,
Bachier
CR
, et al
.
ROCK2 inhibition with belumosudil (KD025) for the treatment of chronic graft-versus-host disease
.
J Clin Oncol
.
2021
;
39
(
17
):
1888
-
1898
.
6.
Zeiser
R
,
Polverelli
N
,
Ram
R
, et al
.
Ruxolitinib for glucocorticoid-refractory chronic graft-versus-host disease
.
N Engl J Med
.
2021
;
385
(
3
):
228
-
238
.
7.
Wolff
D
,
Cutler
C
,
Lee
SJ
, et al
.
Axatilimab in recurrent or refractory chronic graft-versus-host disease
.
N Engl J Med
.
2024
;
391
(
11
):
1002
-
1014
.
8.
Buxbaum
NP
,
Socié
G
,
Hill
GR
, et al
.
Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD
.
Blood Adv
.
2023
;
7
(
17
):
4886
-
4902
.
9.
Socié
G
,
Kean
LS
,
Zeiser
R
,
Blazar
BR
.
Insights from integrating clinical and preclinical studies advance understanding of graft-versus-host disease
.
J Clin Investig
.
2021
;
131
(
12
):
e149296
.
10.
Baron
F
,
Labopin
M
,
Niederwieser
D
, et al
.
Impact of graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation for acute myeloid leukemia: A report from the Acute Leukemia Working Party of the European group for blood and marrow transplantation
.
Leukemia
.
2012
;
26
(
12
):
2462
-
2468
.
11.
Zeiser
R
,
Blazar
BR
.
Pathophysiology of chronic graft-versus-host disease and therapeutic targets
.
N Engl J Med
.
2017
;
377
(
26
):
2565
-
2579
.
12.
Cooke
KR
,
Luznik
L
,
Sarantopoulos
S
, et al
.
The biology of chronic graft-versus-host disease: a task force report from the National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2017
;
23
(
2
):
211
-
234
.
13.
Wilhelm
K
,
Ganesan
J
,
Müller
T
, et al
.
Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R
.
Nat Med
.
2010
;
16
(
12
):
1434
-
1438
.
14.
Zhao
D
,
Young
JS
,
Chen
Y-H
, et al
.
Alloimmune response results in expansion of autoreactive donor CD4 + T cells in transplants that can mediate chronic graft-versus-host disease
.
J Immunol
.
2011
;
186
(
2
):
856
-
868
.
15.
Demasson
A
,
Socié
G
,
Bagot
M
,
Bensussan
A
,
Bouaziz
JD
.
Deficient regulatory B cells in human chronic graft-versus-host disease
.
OncoImmunology
.
2015
;
4
(
7
):
e1016707
.
16.
De Masson
A
,
Bouaziz
JD
,
Le Buanec
H
, et al
.
CD24hiCD27+ and plasmablast-like regulatory B cells in human chronic graft-versus-host disease
.
Blood
.
2015
;
125
(
11
):
1830
-
1839
.
17.
Tivol
E
,
Komorowski
R
,
Drobyski
WR
.
Emergent autoimmunity in graft-versus-host disease
.
Blood
.
2005
;
105
(
12
):
4885
-
4891
.
18.
Flynn
R
,
Du
J
,
Veenstra
RG
, et al
.
Increased T follicular helper cells and germinal center B cells are required for cGVHD and bronchiolitis obliterans
.
Blood
.
2014
;
123
(
25
):
3988
-
3998
.
19.
Wu
T
,
Young
JS
,
Johnston
H
, et al
.
Thymic damage, impaired negative selection, and development of chronic graft-versus-host disease caused by donor CD4 + and CD8 + T cells
.
J Immunol
.
2013
;
191
(
1
):
488
-
499
.
20.
Srinivasan
M
,
Flynn
R
,
Price
A
, et al
.
Donor B-cell alloantibody deposition and germinal center formation are required for the development of murine chronic GVHD and bronchiolitis obliterans
.
Blood
.
2012
;
119
(
6
):
1570
-
1580
.
21.
Jin
H
,
Ni
X
,
Deng
R
, et al
.
Antibodies from donor B cells perpetuate cutaneous chronic graft-versus-host disease in mice
.
Blood
.
2016
;
127
(
18
):
2249
-
2260
.
22.
Yoo
CB
,
Jones
PA
.
Epigenetic therapy of cancer: past, present and future
.
Nat Rev Drug Discov
.
2006
;
5
(
1
):
37
-
50
.
23.
He
S
,
Xie
F
,
Liu
Y
, et al
.
The histone methyltransferase Ezh2 is a crucial epigenetic regulator of allogeneic T-cell responses mediating graft-versus-host disease
.
Blood
.
2013
;
122
(
25
):
4119
-
4128
.
24.
Bashir
Q
,
William
BM
,
Garcia-Manero
G
,
de Lima
M
.
Epigenetic therapy in allogeneic hematopoietic stem cell transplantation
.
Rev Bras Hematol Hemoter
.
2013
;
35
(
2
):
126
-
133
.
25.
Cooper
ML
,
Choi
J
,
Karpova
D
, et al
.
Azacitidine mitigates graft-versus-host disease via differential effects on the proliferation of T effectors and natural regulatory T cells in vivo
.
J Immunol
.
2017
;
198
(
9
):
3746
-
3754
.
26.
Ghobadi
A
,
Choi
J
,
Fiala
MA
, et al
.
Phase I study of azacitidine following donor lymphocyte infusion for relapsed acute myeloid leukemia post allogeneic stem cell transplantation
.
Leuk Res
.
2016
;
49
:
1
-
6
.
27.
Choi
J
,
Ritchey
J
,
Prior
JL
, et al
.
In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia
.
Blood
.
2010
;
116
(
1
):
129
-
139
.
28.
Zhao
C
,
Zhang
Y
,
Zheng
H
.
The effects of interferons on allogeneic T cell response in GVHD: the multifaced biology and epigenetic regulations
.
Front Immunol
.
2021
;
12
:
717540
.
29.
Yang
X
,
Lay
F
,
Han
H
,
Jones
PA
. Targeting DNA methylation for epigenetic therapy.
NIH Public Access
;
2010
.
30.
Zhang
D
,
Chen
J
.
Efficacy of decitabine combined with allogeneic hematopoietic stem cell transplantation in the treatment of recurrent and refractory acute myeloid leukemia (AML): a systematic review and meta-analysis
.
Medicine
.
2022
;
101
(
37
):
E30644
.
31.
Kungwankiattichai
S
,
Ponvilawan
B
,
Roy
C
,
Tunsing
P
,
Kuchenbauer
F
,
Owattanapanich
W
.
Maintenance with hypomethylating agents after allogeneic stem cell transplantation in acute myeloid leukemia and myelodysplastic syndrome: a systematic review and meta-analysis
.
Front Med
.
2022
;
9
:
801632
.
32.
Xu
Z
,
Choi
J
,
Cooper
M
, et al
.
Phase I-II trial of early azacitidine after matched unrelated donor hematopoietic cell transplantation
.
Transplant Cell Ther
.
2023
;
29
(
11
):
699.e1
-
699.e9
.
33.
Pusic
I
,
Choi
J
,
Fiala
MA
, et al
.
Maintenance therapy with decitabine after allogeneic stem cell transplantation for acute myelogenous leukemia and myelodysplastic syndrome
.
Biol Blood Marrow Transplant
.
2015
;
21
(
10
):
1761
-
1769
.
34.
Xuan
L
,
Dai
M
,
Jiang
E
, et al
.
The effect of granulocyte-colony stimulating factor, decitabine, and busulfan-cyclophosphamide versus busulfan-cyclophosphamide conditioning on relapse in patients with myelodysplastic syndrome or secondary acute myeloid leukaemia evolving from myelodysplastic syndrome undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised, phase 3 trial
.
Lancet Haematol
.
2023
;
10
(
3
):
e178
-
e190
.
35.
Rasmussen
KD
,
Helin
K
.
Role of TET enzymes in DNA methylation, development, and cancer
.
Genes Dev
.
2016
;
30
(
7
):
733
-
750
.
36.
Tsagaratou
A
,
González-Avalos
E
,
Rautio
S
, et al
.
TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells
.
Nat Immunol
.
2017
;
18
(
1
):
45
-
53
.
37.
Pastor
WA
,
Aravind
L
,
Rao
A
.
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
.
Nat Rev Mol Cell Biol
.
2013
;
14
(
6
):
341
-
356
.
38.
An
J
,
González-Avalos
E
,
Chawla
A
, et al
.
Acute loss of TET function results in aggressive myeloid cancer in mice
.
Nat Commun
.
2015
;
6
(
1
):
10071
.
39.
Tsagaratou
A
,
Rao
A
.
TET proteins and 5-methylcytosine oxidation in the immune system
.
Cold Spring Harb Symp Quant Biol
.
2013
;
78
(
1
):
1
-
10
.
40.
Chua
GNL
,
Wassarman
KL
,
Sun
H
, et al
.
Cytosine-based TET enzyme inhibitors
.
ACS Med Chem Lett
.
2019
;
10
(
2
):
180
-
185
.
41.
Zhao
Z
,
Chen
L
,
Dawlaty
MM
, et al
.
Combined loss of Tet1 and Tet2 promotes B cell, but not myeloid malignancies, in mice
.
Cell Rep
.
2015
;
13
(
8
):
1692
-
1704
.
42.
Yang
C
,
Li
Z
,
Kang
W
,
Tian
Y
,
Yan
Y
,
Chen
W
.
TET1 and TET3 are essential in induction of Th2-type immunity partly through regulation of IL-4/13A expression in zebrafish model
.
Gene
.
2016
;
591
(
1
):
201
-
208
.
43.
Yue
X
,
Lio
C-WJWJ
,
Samaniego-Castruita
D
,
Li
X
,
Rao
A
.
Loss of TET2 and TET3 in regulatory T cells unleashes effector function
.
Nat Commun
.
2019
;
10
(
1
):
2011
.
44.
Ichiyama
K
,
Chen
T
,
Wang
X
, et al
.
The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells
.
Immunity
.
2015
;
42
(
4
):
613
-
626
.
45.
Baessler
A
,
Novis
CL
,
Shen
Z
, et al
.
Tet2 coordinates with Foxo1 and Runx1 to balance T follicular helper cell and T helper 1 cell differentiation
.
Sci Adv
.
2022
;
8
(
24
):
eabm4982
.
46.
Rasmussen
KD
,
Jia
G
,
Johansen
JV
, et al
.
Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis
.
Genes Dev
.
2015
;
29
(
9
):
910
-
922
.
47.
Ko
M
,
Bandukwala
HS
,
An
J
, et al
.
Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
35
):
14566
-
14571
.
48.
Moran-Crusio
K
,
Reavie
L
,
Shih
A
, et al
.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
.
Cancer Cell
.
2011
;
20
(
1
):
11
-
24
.
49.
Aivalioti
MM
,
Bartholdy
BA
,
Pradhan
K
, et al
.
PU.1-dependent enhancer inhibition separates Tet2-deficient hematopoiesis from malignant transformation
.
Blood Cancer Discov
.
2022
;
3
(
5
):
444
-
467
.
50.
Lazarenkov
A
,
Sardina
JL
.
Dissecting TET2 regulatory networks in blood differentiation and cancer
.
Cancers
.
2022
;
14
(
3
):
830
.
51.
Paz
K
,
Flynn
R
,
Du
J
, et al
.
Small-molecule BCL6 inhibitor effectively treats mice with nonsclerodermatous chronic graft-versus-host disease
.
Blood
.
2019
;
133
(
1
):
94
-
99
.
52.
Panoskaltsis-Mortari
A
,
Tram
KV
,
Price
AP
,
Wendt
CH
,
Blazar
BR
.
A new murine model for bronchiolitis obliterans post-bone marrow transplant
.
Am J Respir Crit Care Med
.
2007
;
176
(
7
):
713
-
723
.
53.
Berns
KI
,
Bond
EC
,
Manning
FJ
;
Resource Sharing in Biomedical Research
.
The American Type Culture Collection
.
National Academies Press (US)
;
1996
.
54.
Glaab
T
,
Taube
C
,
Braun
A
,
Mitzner
W
.
Invasive and noninvasive methods for studying pulmonary function in mice
.
Respir Res
.
2007
;
8
(
1
):
63
.
55.
Pau
G
,
Fuchs
F
,
Sklyar
O
,
Boutros
M
,
Huber
W
.
EBImage-an R package for image processing with applications to cellular phenotypes
.
Bioinformatics
.
2010
;
26
(
7
):
979
-
981
.
56.
Bankhead
P
,
Loughrey
MB
,
Fernández
JA
, et al
.
QuPath: open source software for digital pathology image analysis
.
Sci Rep
.
2017
;
7
(
1
):
16878
.
57.
Blazar
BR
,
Taylor
PA
,
McElmurry
R
, et al
.
Engraftment of severe combined immune deficient mice receiving allogeneic bone marrow via in utero or postnatal transfer
.
Blood
.
1998
;
92
(
10
):
3949
-
3959
.
58.
Sage
PT
,
Sharpe
AH
.
In vitro assay to sensitively measure TFR suppressive capacity and TFH stimulation of B cell responses
.
Methods Mol Biol
.
2015
;
1291
:
151
-
160
.
59.
Weiss
JM
,
Chen
W
,
Nyuydzefe
MS
, et al
.
ROCK2 signaling is required to induce a subset of T follicular helper cells through opposing effects on STATs in autoimmune settings
.
Sci Signal
.
2016
;
9
(
437
):
ra73
.
60.
Du
J
,
Paz
K
,
Flynn
R
, et al
.
Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production
.
Blood
.
2017
;
129
(
18
):
2570
-
2580
.
61.
Forcade
E
,
Paz
K
,
Flynn
R
, et al
.
An activated Th17-prone T cell subset involved in chronic graft-versus-host disease sensitive to pharmacological inhibition
.
JCI Insight
.
2017
;
2
(
12
):
e92111
.
62.
Alexander
KA
,
Flynn
R
,
Lineburg
KE
, et al
.
CSF-1-dependant donor-derived macrophages mediate chronic graft-versus-host disease
.
J Clin Investig
.
2014
;
124
(
10
):
4266
-
4280
.
63.
Shinde
P
,
Howie
HL
,
Stegmann
TC
, et al
.
IgG subclass determines suppression versus enhancement of humoral alloimmunity to Kell RBC antigens in mice
.
Front Immunol
.
2020
;
11
:
1516
.
64.
Qiu
A
,
Miller
A
,
Dei
Zotti F
, et al
.
Fcg RIV is required for IgG2c mediated enhancement of RBC alloimmunization
.
Front Immunol
.
2022
;
13
:
972723
.
65.
Zhou
J
,
Gao
H
,
Xie
W
,
Li
Y
.
FcgR-binding affinity of monoclonal murine IgG1s carrying different N-linked Fc oligosaccharides
.
.
2019
;
520
(
1
):
8
-
13
.
66.
Ravetch
JV
,
Bolland
S
.
IgG Fc receptors
.
Annu Rev Immunol
.
2001
;
19
(
1
):
275
-
290
.
67.
Anderson
CL
,
Shen
L
,
Eicher
DM
,
Wewers
MD
,
Gill
JK
.
Phagocytosis mediated by three distinct Fcγ receptor classes on human leukocytes
.
J Exp Med
.
1990
;
171
(
4
):
1333
-
1345
.
68.
Young
JD
,
Ko
SS
,
Cohn
ZA
.
The increase in intracellular free calcium associated with IgGγ2b/γ1 Fc receptor-ligand interactions: role in phagocytosis
.
Proc Natl Acad Sci U S A
.
1984
;
81
(
17
):
5430
-
5434
.
69.
Titus
JA
,
Perez
P
,
Kaubisch
A
,
Garrido
MA
,
Segal
DM
.
Human K/natural killer cells targeted with hetero-cross-linked antibodies specifically lyse tumor cells in vitro and prevent tumor growth in vivo
.
J Immunol
.
1987
;
139
(
9
):
3153
-
3158
.
70.
Ono
M
,
Bolland
S
,
Tempst
P
,
Ravetch
JV
.
Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB
.
Nature
.
1996
;
383
(
6597
):
263
-
266
.
71.
Daëron
M
,
Latour
S
,
Malbec
O
, et al
.
The same tyrosine-based inhibition motif, in the intra-cytoplasmic domain of FcγRIIB, regulates negatively BCR-TCR-and FcR-dependent cell activation
.
Immunity
.
1995
;
3
(
5
):
635
-
646
.
72.
Malbec
O
,
Fong
DC
,
Turner
M
, et al
.
Fc epsilon receptor I-associated lyn-dependent phosphorylation of Fc gamma receptor IIB during negative regulation of mast cell activation
.
J Immunol
.
1998
;
160
(
4
):
1647
-
1658
.
73.
Rispens
T
,
Huijbers
MG
.
The unique properties of IgG4 and its roles in health and disease
.
Nat Rev Immunol
.
2023
;
23
(
11
):
763
-
778
. 23:11.
74.
Huijbers
MG
,
Querol
LA
,
Niks
EH
, et al
.
The expanding field of IgG4-mediated neurological autoimmune disorders
.
Eur J Neurol
.
2015
;
22
(
8
):
1151
-
1161
.
75.
Park
JS
,
Choi
HJ
,
Jung
KM
, et al
.
Production of recombinant human IgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activity using genome-edited chickens
.
Commun Biol
.
2023
;
6
(
1
):
589
.
76.
Aloulou
M
,
Ben Mkaddem
S
,
Biarnes-Pelicot
M
, et al
.
IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses
.
Blood
.
2012
;
119
(
13
):
3084
-
3096
.
77.
Zheng
WP
,
Flavell
RA
.
The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells
.
Cell
.
1997
;
89
(
4
):
587
-
596
.
78.
Zhang
DH
,
Cohn
L
,
Ray
P
,
Bottomly
K
,
Ray
A
.
Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene
.
J Biol Chem
.
1997
;
272
(
34
):
21597
-
21603
.
79.
Luo
W
,
Hu
J
,
Xu
W
,
Dong
J
.
Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma
.
Front Immunol
.
2022
;
13
:
974066
.
80.
Lexberg
MH
,
Taubner
A
,
Förster
A
, et al
.
Th memory for interleukin-17 expression is stable in vivo
.
Eur J Immunol
.
2008
;
38
(
10
):
2654
-
2664
.
81.
Harbour
SN
,
Maynard
CL
,
Zindl
CL
,
Schoeb
TR
,
Weaver
CT
.
Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
22
):
7061
-
7066
.
82.
Hirota
K
,
Duarte
JH
,
Veldhoen
M
, et al
.
Fate mapping of IL-17-producing T cells in inflammatory responses
.
Nat Immunol
.
2011
;
12
(
3
):
255
-
263
.
83.
Bending
D
,
De La Peña
H
,
Veldhoen
M
, et al
.
Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice
.
J Clin Investig
.
2009
;
119
(
3
):
565
-
572
.
84.
Lee
YK
,
Turner
H
,
Maynard
CL
, et al
.
Late developmental plasticity in the T helper 17 lineage
.
Immunity
.
2009
;
30
(
1
):
92
-
107
.
85.
Chen
T
,
Ali Al-Radhawi
M
,
Sontag
ED
.
A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks
.
Epigenetics
.
2021
;
16
(
4
):
436
-
457
.
86.
Koh
KP
,
Rao
A
.
DNA methylation and methylcytosine oxidation in cell fate decisions
.
Curr Opin Cell Biol
.
2013
;
25
(
2
):
152
-
161
.
87.
Clark
SJ
,
Argelaguet
R
,
Lohoff
T
, et al
.
Single-cell multi-omics profiling links dynamic DNA methylation to cell fate decisions during mouse early organogenesis
.
Genome Biol
.
2022
;
23
(
1
):
202
.
88.
Thangavelu
G
,
Zaiken
MC
,
Mohamed
FA
, et al
.
Targeting the retinoid X receptor pathway prevents and ameliorates murine chronic graft-versus-host disease
.
Front Immunol
.
2022
;
13
:
765319
.
89.
Chi
X
,
Jin
W
,
Zhao
X
, et al
.
RORγt expression in mature TH17 cells safeguards their lineage specification by inhibiting conversion to TH2 cells
.
Sci Adv
.
2022
;
8
(
34
):
eabn7774
.
90.
Salminen
A
,
Kaarniranta
K
,
Hiltunen
M
,
Kauppinen
A
.
Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process
.
Cell Signal
.
2014
;
26
(
7
):
1598
-
1603
.
91.
Kaplánek
R
,
Kejík
Z
,
Hajduch
J
, et al
.
TET protein inhibitors: potential and limitations
.
Biomed Pharmacother
.
2023
;
166
:
115324
.
92.
Palei
S
,
Weisner
J
,
Vogt
M
, et al
.
A high-throughput effector screen identifies a novel small molecule scaffold for inhibition of ten-eleven translocation dioxygenase 2 [published correction appears in RSC Med Chem. 2024;15(2):753-754]
.
RSC Med Chem
.
2022
;
13
(
12
):
1540
-
1548
.
93.
Singh
AK
,
Zhao
B
,
Liu
X
, et al
.
Selective targeting of TET catalytic domain promotes somatic cell reprogramming
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
7
):
3621
-
3626
.
94.
Antonyová
V
,
Tatar
A
,
Brogyányi
T
, et al
.
Targeting of the mitochondrial TET1 protein by pyrrolo[3,2-b]pyrrole chelators
.
Int J Mol Sci
.
2022
;
23
(
18
):
10850
.
95.
Mo
F
,
Watanabe
N
,
Omdahl
KI
, et al
.
Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation
.
Blood
.
2023
;
141
(
10
):
1194
-
1208
.
96.
Hippen
KL
,
Hefazi
M
,
Larson
JH
,
Blazar
BR
.
Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease
.
Front Immunol
.
2022
;
13
:
926550
.
97.
Blazar
BR
,
Hill
GR
,
Murphy
WJ
.
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD
.
Nat Rev Clin Oncol
.
2020
;
17
(
8
):
475
-
492
.
98.
Yu
Y
,
Wang
D
,
Liu
C
, et al
.
Prevention of GVHD while sparing GVL effect by targeting Th1 and Th17 transcription factor T-bet and RORγt in mice
.
Blood
.
2011
;
118
(
18
):
5011
-
5020
.
You do not currently have access to this content.
Sign in via your Institution