• JAK2 V617F induces splenomegaly, erythrocytosis, leukocytosis, and perivascular fibrosis of the spleen in the absence of MPL.

  • MPL is required for JAK2 V617F–dependent expansion of hematopoietic stem cells but not of early hematopoietic progenitors.

Abstract

The Jak2 V617F mutation stands as the main driver of myeloproliferative neoplasms (MPNs) by constitutively activating signaling through several type I cytokine receptors, namely the erythropoietin receptor, the thrombopoietin receptor (TpoR)/myeloproliferative leukemia (Mpl) protein, and the granulocyte colony-stimulating factor receptor. Among these, TpoR assumes a pivotal role in hematopoietic stem cell renewal and differentiation, being positioned as a key driver of MPNs alongside mutated Jak2. However, the impact of TpoR/Mpl absence in the context of Jak2 V617F in vivo has been explored only through a transgenic Jak2 V617F mouse model, in which regulation of Jak2 expression does not depend on its natural promoter. In this study, we use a novel mouse model expressing Jak2 V617F under its endogenous promoter at the heterozygous state within a Mpl knockout background. Our findings indicate that erythrocytosis, leukocytosis, and moderate splenomegaly with mild perivascular fibrosis of the spleen persist even in the absence of Mpl expression. Notably, the inherent growth-stimulating effect induced by Jak2 V617F remains consistent across diverse early hematopoietic progenitor populations in the absence of Mpl but is reduced at the stem cell level and does not allow clonal expansion in competitive transplantation. Our results delineate Mpl-dependent and -independent phenotypes induced by Jak2 V617F and confirm that inhibiting Mpl expression at the stem cell level negates the long-term advantage of the mutant clone. Consequently, although Mpl emerges as a major player in Jak2 V617F–positive MPNs, our study underscores that it is not the exclusive contributor, broadening the spectrum for therapeutic intervention.

1.
Constantinescu
SN
,
Vainchenker
W
,
Levy
G
,
Papadopoulos
N
.
Functional consequences of mutations in myeloproliferative neoplasms
.
Hemasphere
.
2021
;
5
(
6
):
e578
.
2.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med
.
2013
;
369
(
25
):
2379
-
2390
.
3.
Nangalia
J
,
Massie
CE
,
Baxter
EJ
, et al
.
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
.
N Engl J Med
.
2013
;
369
(
25
):
2391
-
2405
.
4.
Chachoua
I
,
Pecquet
C
,
El-Khoury
M
, et al
.
Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants
.
Blood
.
2016
;
127
(
10
):
1325
-
1335
.
5.
Lu
X
,
Levine
R
,
Tong
W
, et al
.
Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
52
):
18962
-
18967
.
6.
Papadopoulos
N
,
Pristavec
A
,
Nédélec
A
,
Levy
G
,
Staerk
J
,
Constantinescu
SN
.
Modulation of human thrombopoietin receptor conformations uncouples JAK2 V617F-driven activation from cytokine-induced stimulation
.
Blood
.
2023
;
142
(
21
):
1818
-
1830
.
7.
Sangkhae
V
,
Etheridge
SL
,
Kaushansky
K
,
Hitchcock
IS
.
The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm
.
Blood
.
2014
;
124
(
26
):
3956
-
3963
.
8.
Spivak
JL
,
Merchant
A
,
Williams
DM
, et al
.
Thrombopoietin is required for full phenotype expression in a JAK2V617F transgenic mouse model of polycythemia vera
.
PLoS One
.
2020
;
15
(
6
):
e0232801
.
9.
Murone
M
,
Carpenter
DA
,
de Sauvage
FJ
.
Hematopoietic deficiencies in c-mpl and TPO knockout mice
.
Stem Cells
.
1998
;
16
(
1
):
1
-
6
.
10.
Marty
C
,
Lacout
C
,
Martin
A
, et al
.
Myeloproliferative neoplasm induced by constitutive expression of JAK2V617F in knock-in mice
.
Blood
.
2010
;
116
(
5
):
783
-
787
.
11.
Hasan
S
,
Lacout
C
,
Marty
C
, et al
.
JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα
.
Blood
.
2013
;
122
(
8
):
1464
-
1477
.
12.
Ryou
H
,
Sirinukunwattana
K
,
Aberdeen
A
, et al
.
Continuous Indexing of Fibrosis (CIF): improving the assessment and classification of MPN patients
.
Leukemia
.
2023
;
37
(
2
):
348
-
358
.
13.
Choi
DC
,
Abu-Zeinah
G
,
Di Giandomenico
S
,
Erdos
K
,
Scandura
J
.
JAK2V617F impairs T cell differentiation in polycythemia vera [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
6746
-
6747
.
14.
Li
J
,
Kent
DG
,
Chen
E
,
Green
AR
.
Mouse models of myeloproliferative neoplasms: JAK of all grades
.
Dis Model Mech
.
2011
;
4
(
3
):
311
-
317
.
15.
Vaidya
R
,
Gangat
N
,
Jimma
T
, et al
.
Plasma cytokines in polycythemia vera: phenotypic correlates, prognostic relevance, and comparison with myelofibrosis
.
Am J Hematol
.
2012
;
87
(
11
):
1003
-
1005
.
16.
Verstovsek
S
,
Kantarjian
H
,
Mesa
RA
, et al
.
Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis
.
N Engl J Med
.
2010
;
363
(
12
):
1117
-
1127
.
17.
Pourcelot
E
,
Trocme
C
,
Mondet
J
,
Bailly
S
,
Toussaint
B
,
Mossuz
P
.
Cytokine profiles in polycythemia vera and essential thrombocythemia patients: clinical implications
.
Exp Hematol
.
2014
;
42
(
5
):
360
-
368
.
18.
Gersuk
GM
,
Carmel
R
,
Pattengale
P
.
Platelet-derived growth factor concentrations in platelet-poor plasma and urine from patients with myeloproliferative disorders
.
Blood
.
1989
;
74
(
7
):
2330
-
2334
.
19.
Kramer
F
,
Dernedde
J
,
Mezheyeuski
A
,
Tauber
R
,
Micke
P
,
Kappert
K
.
Platelet-derived growth factor receptor β activation and regulation in murine myelofibrosis
.
Haematologica
.
2020
;
105
(
8
):
2083
-
2094
.
20.
Leimkühler
NB
,
Gleitz
HFE
,
Ronghui
L
, et al
.
Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis
.
Cell Stem Cell
.
2021
;
28
(
4
):
637
-
652.e638
.
21.
Akada
H
,
Yan
D
,
Zou
H
,
Fiering
S
,
Hutchison
RE
,
Mohi
MG
.
Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease
.
Blood
.
2010
;
115
(
17
):
3589
-
3597
.
22.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
23.
Shide
K
,
Shimoda
HK
,
Kumano
T
, et al
.
Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F
.
Leukemia
.
2008
;
22
(
1
):
87
-
95
.
24.
Tiedt
R
,
Hao-Shen
H
,
Sobas
MA
, et al
.
Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice
.
Blood
.
2008
;
111
(
8
):
3931
-
3940
.
25.
Xing
S
,
Wanting
TH
,
Zhao
W
, et al
.
Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice
.
Blood
.
2008
;
111
(
10
):
5109
-
5117
.
26.
James
C
,
Ugo
V
,
Le Couédic
J-P
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
27.
Leroy
E
,
Balligand
T
,
Pecquet
C
, et al
.
Differential effect of inhibitory strategies of the V617 mutant of JAK2 on cytokine receptor signaling
.
J Allergy Clin Immunol
.
2019
;
144
(
1
):
224
-
235
.
28.
Lu
X
,
Huang
LJ
,
Lodish
HF
.
Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F
.
J Biol Chem
.
2008
;
283
(
9
):
5258
-
5266
.
29.
Wilmes
S
,
Hafer
M
,
Vuorio
J
, et al
.
Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations
.
Science
.
2020
;
367
(
6478
):
643
-
652
.
30.
Fox
N
,
Priestley
G
,
Papayannopoulou
T
,
Kaushansky
K
.
Thrombopoietin expands hematopoietic stem cells after transplantation
.
J Clin Invest
.
2002
;
110
(
3
):
389
-
394
.
31.
Qian
H
,
Buza-Vidas
N
,
Hyland
CD
, et al
.
Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells
.
Cell Stem Cell
.
2007
;
1
(
6
):
671
-
684
.
32.
Solar
GP
,
Kerr
WG
,
Zeigler
FC
, et al
.
Role of c-mpl in early hematopoiesis
.
Blood
.
1998
;
92
(
1
):
4
-
10
.
33.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell
.
2005
;
121
(
7
):
1109
-
1121
.
34.
Oguro
H
,
Ding
L
,
Morrison
SJ
.
SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
.
Cell Stem Cell
.
2013
;
13
(
1
):
102
-
116
.
35.
Ikuta
K
,
Weissman
IL
.
Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation
.
Proc Natl Acad Sci U S A
.
1992
;
89
(
4
):
1502
-
1506
.
36.
Spangrude
GJ
,
Heimfeld
S
,
Weissman
IL
.
Purification and characterization of mouse hematopoietic stem cells
.
Science
.
1988
;
241
(
4861
):
58
-
62
.
37.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
38.
Nestorowa
S
,
Hamey
FK
,
Pijuan Sala
B
, et al
.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
.
Blood
.
2016
;
128
(
8
):
e20
-
e31
.
39.
Pronk
CJH
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
40.
Li
J
,
Spensberger
D
,
Ahn
JS
, et al
.
JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F–positive essential thrombocythemia
.
Blood
.
2010
;
116
(
9
):
1528
-
1538
.
41.
Melo-Cardenas
J
,
Migliaccio
AR
,
Crispino
JD
.
The role of megakaryocytes in myelofibrosis
.
Hematol Oncol Clin North Am
.
2021
;
35
(
2
):
191
-
203
.
42.
Scott
MKD
,
Quinn
K
,
Li
Q
, et al
.
Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: a retrospective, multicentre cohort study
.
Lancet Respir Med
.
2019
;
7
(
6
):
497
-
508
.
43.
Tefferi
A
,
Shah
S
,
Mudireddy
M
, et al
.
Monocytosis is a powerful and independent predictor of inferior survival in primary myelofibrosis
.
Br J Haematol
.
2018
;
183
(
5
):
835
-
838
.
44.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science
.
2019
;
366
(
6465
):
eaan4673
.
You do not currently have access to this content.
Sign in via your Institution