Background: Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in roughly 25% of younger adult patients (pts) with acute myeloid leukemia (AML). The multi-targeted kinase inhibitor midostaurin combined with intensive chemotherapy has shown activity against AML with FLT3 mutations. However, toxicity and potential drug-drug interactions with strong CYP3A4 inhibitors such as posaconazole may necessitate dose reduction.

Aims: To evaluate the impact of age and midostaurin dose-adaptation after intensive induction chemotherapy on response and outcome in AML with FLT3-ITD within the AMLSG 16-10 trial (NCT01477606).

Methods: The study included adult pts (age 18-70 years (yrs)) with newly diagnosed FLT3-ITD positive AML enrolled in the ongoing single-arm phase-II AMLSG 16-10 trial. Pts with acute promyelocytic leukemia were not eligible. The presence of FLT3-ITD was analyzed within our diagnostic study AMLSG-BiO (NCT01252485) by Genescan-based DNA fragment-length analysis. Induction therapy consisted of daunorubicin (60 mg/m², d1-3) and cytarabine (200 mg/m², continuously, d1-7); midostaurin 50 mg bid was applied from day 8 until 48h before start of the next treatment cycle. A second cycle was allowed in case of partial remission (PR). For consolidation therapy, pts proceeded to allogeneic hematopoietic-cell transplantation (HCT) as first priority; if alloHCT was not feasible, pts received three cycles of age-adapted high-dose cytarabine (HDAC) in combination with midostaurin starting on day 6. In all pts one-year maintenance therapy with midostaurin was intended. The first patient entered the study in June 2012 and in April 2014, after recruitment of n=147 pts, the study was amended including a sample size increase to 284 pts and a dose reduction to 12.5% of the initial dose of midostaurin in case of co-medication with strong CYP3A4 inhibitors (e.g. posaconazole). This report focuses on age and the comparison between the first (n=147) and the second cohort (n=137) of the study in terms midostaurin dose-adaptation.

Results: Patient characteristics were as follows: median age 54 yrs (range, 18-70; younger, 68% < 60 yrs; older, 32% ≥ 60 yrs); median white cell count 44.7G/l (range 1.1-1543 G/l); karyotype, n=161 normal, n=16 high-risk according to ELN recommendations; mutated NPM1 n=174 (59%). Data on response to first induction therapy were available in 277 pts; complete remission (CR) including CR with incomplete hematological recovery (CRi) 60%, PR 20%, refractory disease (RD) 15%, and death 5%. A second induction cycle was given in 54 pts. Overall response (CR/CRi) after induction therapy was 76% (76%, younger; 76%, older) and death 6% (4%, younger; 10% older). The dose of midostaurin during first induction therapy was reduced in 53% and 71% of patients in cohort-1 and cohort-2, respectively. Reasons for dose reduction were in 58% and 49% toxicity, and in 9% and 23% co-medication in cohort-1 and cohort-2, respectively. No difference in response to induction therapy was noted between cohorts (p=0.81). Median follow-up was 18 months. Overall 146 pts received an alloHCT, 128 in first CR (n=94 younger, n=34 older; n=92 from a matched unrelated and n=36 from a matched related donor). In pts receiving an alloHCT within the protocol in median two chemotherapy cycles were applied before transplant (range 1-4). The cumulative incidence of relapse (CIR) and death after transplant were 13% (SE 3.2%) and 16% (SE 3.5%) without differences (p=0.97, p=0.41, respectively) between younger and older patients. So far maintenance therapy was started in 86 pts, 61 pts after alloHCT and 25 pts after HDAC. Fifty-five adverse events 3°/4° were reported being attributed to midostaurin; cytopenias after alloHCT were the most frequent (29%). CIR in patients starting maintenance therapy was 20% one year after start of maintenance without difference between alloHCT and HiDAC (p=0.99). In addition, no difference in CIR was identified in patients after consolidation with alloHCT or HDAC according to dose reduction of midostaurin during first induction therapy (p=0.43, p=0.98, respectively). Median overall survival was 25 months (younger, 26 months; older 23 months; p=0.15).

Conclusions: The addition of midostaurin to intensive induction therapy and as maintenance after alloHCT or HDAC is feasible and effective without an impact of age and dose adaptation on outcome.

Disclosures

Schlenk:Amgen: Research Funding; Pfizer: Honoraria, Research Funding. Fiedler:GSO: Other: Travel; Pfizer: Research Funding; Kolltan: Research Funding; Amgen: Consultancy, Other: Travel, Patents & Royalties, Research Funding; Gilead: Other: Travel; Ariad/Incyte: Consultancy; Novartis: Consultancy; Teva: Other: Travel. Lübbert:Celgene: Other: Travel Funding; Janssen-Cilag: Other: Travel Funding, Research Funding; Ratiopharm: Other: Study drug valproic acid. Greil:Janssen-Cilag: Honoraria; Genentech: Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Merck: Honoraria; AstraZeneca: Honoraria; Boehringer-Ingelheim: Honoraria; GSK: Research Funding; Ratiopharm: Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Honoraria; Bristol-Myers-Squibb: Consultancy, Honoraria; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Research Funding; Sanofi Aventis: Honoraria; Eisai: Honoraria; Amgen: Honoraria, Research Funding. Greiner:BMS: Research Funding. Paschka:ASTEX Pharmaceuticals: Consultancy; Novartis: Consultancy; Medupdate GmbH: Honoraria; Bristol-Myers Squibb: Honoraria; Pfizer Pharma GmbH: Honoraria; Celgene: Honoraria. Heuser:Bayer Pharma AG: Research Funding; Karyopharm Therapeutics Inc: Research Funding; Novartis: Consultancy, Research Funding; Celgene: Honoraria; Pfizer: Research Funding; BerGenBio: Research Funding; Tetralogic: Research Funding.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution