Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. It is estimated that 13,410 cases will be diagnosed and 8,990 will die of AML in the United States in 2007 (http://seer.cancer.gov). AML is a genetically diverse hematopoietic malignancy with variable response to treatment. Expression profiling of protein-coding genes using DNA microarray in AML has resulted in inconsistent data from different laboratories. Therefore, further validation of these observations in large cohorts and in independent studies is definitely required before clinical application becomes feasible. Recently, Golub and colleagues described a new, bead-based flow cytometric microRNA (miRNAs, miRs) expression profiling method that could successfully classify tumors. MiRNAs are endogenous ∼22 nucleotide non-coding RNAs, which can function as oncogenes and tumor suppressors. To provide new insights into the complex genetic alterations in leukemogenesis and to identify novel markers for diagnosis and treatment of AML, we performed a genome-wide analysis of miRNA expression profiles using the bead-based method on 54 AML samples with common translocations including t(15;17), t(8;21), inv(16), and 11q23 rearrangement, along with normal controls. In both unsupervised and supervised hierarchical cluster analyses, we observed that t(15;17) samples grouped together as one cluster, as do the 11q23 rearrangement samples. Interestingly, t(8;21) and inv(16), both CBF (core-binding factor) AMLs, grouped together as a unique cluster. Forty-one miRNAs exhibited significantly differential expression between different subtypes of AMLs, and/or between AMLs and normal controls. Notably, expression signature of a minimal number of two, three, and seven miRNAs could be used for class prediction of CBF, t(15;17), and 11q23 rearrangement AMLs, respectively, with an overall diagnostic accuracy of 94–96%. We further showed that overexpression of the two discriminatory miRNAs in CBF AML is associated with epigenetic regulation, rather than DNA copy number amplification. Moreover, several important target genes of these discriminatory miRNAs have also been validated. We are currently exploring the role of these discriminatory miRNAs and their critical target genes in the development of AML using in vitro and in vivo models. This work will enhance our understanding of the biological role of these miRNAs and their targets in leukemogenesis.
Author notes
Disclosure: No relevant conflicts of interest to declare.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal