Long noncoding RNAs (lncRNA) are major regulators of chromatin dynamics and gene expression. We have recently performed deep RNA sequencing of CD138+ cells from 360 uniformly-treated, newly-diagnosed multiple myeloma (MM) patients (IFM/DFCI 2009) and described the lncRNA landscape and their role as independent risk predictors for clinical outcome in MM. Moreover, we have identified one of these lncRNAs - lnc-17-92 - as an independent risk predictor highly correlating with EFS and OS in newly-diagnosed MM providing rationale to define its molecular role in MM.

Lnc-17-92 is generated at MIR17HG gene locus and is known for being involved in the biogenesis of miR-17-92 cluster of microRNAs. We here establish, for the first time, role of this transcript as a lncRNA with microRNA-independent function and molecular and biological implications in MM.

Having confirmed its expression in MM cell lines and primary MM cells, we have utilized antisense oligonucleotides (n=3) to suppress lnc-17-92 expression in large panel of human MM cell lines (HMCLs) (n=12) and primary patient MM cells (n=13). Lnc-17-92 inhibition impaired MM cell proliferation leading to apoptotic cell death. This inhibitory effect was not rescued by ectopic expression of miR-17-92 microRNAs, confirming independent activity of lnc-17-92 on MM cell growth and viability. The microRNA-independent role of lnc-17-92 in transcriptional control was further confirmed using DROSHAKOcells.

Analysis of transcriptomic changes after lnc-17-92 modulation in HMCLs and primary MM cells identified bona fide transcriptional targets of lnc-17-92. Using two independent MM RNA-seq datasets, we observed high correlation (R> 0.4) between lnc-17-92 expression and the expression of 12 of the transcriptional targets identified above. Interestingly, these genes were significantly enriched within metabolic pathways, suggesting an unexplored role for lnc-17-92 in MM cell metabolism. Further analysis using an RNAi-based loss-of-function screening in 3 HMCLs revealed Acetyl-CoA Carboxylase Alpha (ACC1) as a novel myeloma vulnerability.

ACC1 encodes the limiting enzyme in the de novo lipogenesis pathway. Analysis of incorporation of C14-radiolabeled glucose into lipids in MM cells revealed that inhibition of ACC1 or lnc-17-92 strongly inhibited de novo lipogenesis in HMCLs and in primary MM cells. We have used ACC1 conditional KD MM cells expressing IPTG-inducible ACC1 shRNAs and confirmed significant role of ACC1 in MM cell growth and survival, both in vitro and in vivo in SCID mice model. Importantly, supplementation of palmitate, the main downstream product of ACC1 activity, significantly reverses the growth inhibitory effect of either ACC1 or lnc-17-92 suppression in MM cells. These data suggest an important role for lipogenesis pathway on lnc-17-92-promoted MM cell growth.

We have further investigated mechanism by which lnc-17-92 may exert its transcriptional control. Protein-RNA pulldown assay established MYC as interacting partner of lnc-17-92. This interaction was confirmed by immunoprecipitation of MYC-bound RNA followed by qRT-PCR with specific primers for detection of lnc-17-92. ChIP-seq analysis revealed a direct binding of MYC at regulatory regions of ACC1 in MM.1S cells; these data were corroborated by the decreased ACC1 expression observed in MYC KD MM cells. Taken together, these data suggest that lnc-17-92 may function as a scaffold between MYC and the E-box motifs present on ACC1 intronic sequences, facilitating MYC binding and its transcriptional activity on ACC1.

Finally, for translational application, we have pre-clinically investigated ND-646, a clinically applicable small molecule inhibitor of ACC1. Analysis of incorporation of C14-radiolabeled glucose into lipids confirmed its effect on lipogenesis in MM, which was associated with a significant in vitro growth inhibitory activity in large panel of HMCLs and primary patient MM cells. In vivo studies in murine model of human MM, using this oral agent, are ongoing and will be presented.

In conclusion, we here report for the first time the microRNA-independent role of lnc-17-92 in MM pathobiology with direct impact on transcriptional control of lipogenesis. The availability of oral inhibitor of this pathway may allow the clinical application of this unique targeted therapy in MM.

Disclosures

Anderson:Janssen: Other: Advisory Board; Gilead Sciences: Other: Advisory Board; OncoPep: Other: Scientific founder ; Sanofi-Aventis: Other: Advisory Board; C4 Therapeutics: Other: Scientific founder . Munshi:Abbvie: Consultancy; Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Adaptive: Consultancy; Oncopep: Consultancy; Celgene: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Oncopep: Consultancy; Takeda: Consultancy; Amgen: Consultancy; Abbvie: Consultancy.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution