Abstract

Follicular lymphoma (FL) is a generally incurable malignancy that originates from developmentally blocked germinal center B cells residing, primarily, within lymph nodes (LNs). During the long natural history of FL, malignant B cells often disseminate to multiple LNs and can affect virtually any organ. Nonmalignant LNs are highly organized structures distributed throughout the body, in which they perform functions critical for host defense. In FL, the malignant B cells “re-educate” the lymphoid environment by altering the phenotype, distribution, and abundance of other cells such as T cells, macrophages, and subsets of stromal cells. Consequently, dramatic anatomical changes occur and include alterations in the number, shape, and size of neoplastic follicles with an accompanying attenuation of the T-cell zone. Ongoing and dynamic interactions between FL B cells and the tumor microenvironment (TME) result in significant clinical heterogeneity observed both within and across patients. Over time, FL evolves into pathological variants associated with distinct outcomes, ranging from an indolent disease to more aggressive clinical courses with early death. Given the importance of both cell-intrinsic and -extrinsic factors in shaping disease progression and patient survival, comprehensive examination of FL tumors is critical. Here, we describe the cellular composition and architecture of normal and malignant human LNs and provide a broad overview of emerging technologies for deconstructing the FL TME at single-cell and spatial resolution. We additionally discuss the importance of capturing samples at landmark time points as well as longitudinally for clinical decision-making.

1.
Casulo
C
,
Byrtek
M
,
Dawson
KL
, et al
.
Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the National LymphoCare Study
.
J Clin Oncol
.
2015
;
33
(
23
):
2516
-
2522
.
2.
Casulo
C
,
Dixon
JG
,
Le-Rademacher
J
, et al
.
Validation of POD24 as a robust early clinical end point of poor survival in FL from 5225 patients on 13 clinical trials
.
Blood
.
2022
;
139
(
11
):
1684
-
1693
.
3.
Freeman
CL
,
Kridel
R
,
Moccia
AA
, et al
.
Early progression after bendamustine-rituximab is associated with high risk of transformation in advanced stage follicular lymphoma
.
Blood
.
2019
;
134
(
9
):
761
-
764
.
4.
Carbone
A
,
Roulland
S
,
Gloghini
A
, et al
.
Follicular lymphoma
.
Nat Rev Dis Primers
.
2019
;
5
(
1
):
83
.
5.
Laurent
C
,
Cook
JR
,
Yoshino
T
,
Quintanilla-Martinez
L
,
Jaffe
ES
.
Follicular lymphoma and marginal zone lymphoma: how many diseases?
.
Virchows Arch
.
2023
;
482
(
1
):
149
-
162
.
6.
Zhou
T
,
Pittaluga
S
,
Jaffe
ES
.
Molecular insights into the pathogenesis of follicular lymphoma [abstract]
.
Annals of Lymphoma
.
2021
;
5
:
7149
.
7.
Rodgers
TD
,
Casulo
C
,
Boissard
F
,
Launonen
A
,
Parreira
J
,
Cartron
G
.
Early Relapse in first-line follicular lymphoma: a review of the clinical implications and available mitigation and management strategies
.
Oncol Ther
.
2021
;
9
(
2
):
329
-
346
.
8.
Maurer
MJ
,
Bachy
E
,
Ghesquières
H
, et al
.
Early event status informs subsequent outcome in newly diagnosed follicular lymphoma
.
Am J Hematol
.
2016
;
91
(
11
):
1096
-
1101
.
9.
Lackraj
T
,
Goswami
R
,
Kridel
R
.
Pathogenesis of follicular lymphoma
.
Best Pract Res Clin Haematol
.
2018
;
31
(
1
):
2
-
14
.
10.
Scott
DW
,
Gascoyne
RD
.
The tumour microenvironment in B cell lymphomas
.
Nat Rev Cancer
.
2014
;
14
(
8
):
517
-
534
.
11.
Kridel
R
,
Chan
FC
,
Mottok
A
, et al
.
Histological transformation and progression in follicular lymphoma: a clonal evolution study
.
PLoS Med
.
2016
;
13
(
12
):
e1002197
.
12.
Dave
SS
,
Wright
G
,
Tan
B
, et al
.
Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells
.
N Engl J Med
.
2004
;
351
(
21
):
2159
-
2169
.
13.
Nath
K
,
Tsang
H
,
Gandhi
MK
.
Tumor microenvironment of follicular lymphoma [abstract]
.
Annals of Lymphoma
.
2021
;
5
:
7357
.
14.
Küppers
R
,
Stevenson
FK
.
Critical influences on the pathogenesis of follicular lymphoma
.
Blood
.
2018
;
131
(
21
):
2297
-
2306
.
15.
Tan
D
,
Horning
SJ
,
Hoppe
RT
, et al
.
Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience
.
Blood
.
2013
;
122
(
6
):
981
-
987
.
16.
Sarkozy
C
,
Maurer
MJ
,
Link
BK
, et al
.
Cause of death in follicular lymphoma in the first decade of the rituximab era: a pooled analysis of French and US cohorts
.
J Clin Oncol
.
2019
;
37
(
2
):
144
-
152
.
17.
Ghione
P
,
Palomba
ML
,
Ghesquieres
H
, et al
.
Treatment patterns and outcomes in relapsed/refractory follicular lymphoma: results from the international SCHOLAR-5 study
.
Haematologica
.
2023
;
108
(
3
):
822
-
832
.
18.
Kastenmuller
W
,
Torabi-Parizi
P
,
Subramanian
N
,
Lammermann
T
,
Germain
RN
.
A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread
.
Cell
.
2012
;
150
(
6
):
1235
-
1248
.
19.
Gerner
MY
,
Kastenmuller
W
,
Ifrim
I
,
Kabat
J
,
Germain
RN
.
Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes
.
Immunity
.
2012
;
37
(
2
):
364
-
376
.
20.
Grant
SM
,
Lou
M
,
Yao
L
,
Germain
RN
,
Radtke
AJ
.
The lymph node at a glance–how spatial organization optimizes the immune response
.
J Cell Sci
.
2020
;
133
(
5
):
jcs241828
.
21.
Moore
JE
,
Bertram
CD
.
Lymphatic System Flows
.
Annu Rev Fluid Mech
.
2018
;
50
(
1
):
459
-
482
.
22.
Carter
PB
,
Collins
FM
.
The route of enteric infection in normal mice
.
J Exp Med
.
1974
;
139
(
5
):
1189
-
1203
.
23.
Mowat
AM
,
Agace
WW
.
Regional specialization within the intestinal immune system
.
Nat Rev Immunol
.
2014
;
14
(
10
):
667
-
685
.
24.
Esterházy
D
,
Canesso
MCC
,
Mesin
L
, et al
.
Compartmentalized gut lymph node drainage dictates adaptive immune responses
.
Nature
.
2019
;
569
(
7754
):
126
-
130
.
25.
Willard-Mack
CL
.
Normal structure, function, and histology of lymph nodes
.
Toxicol Pathol
.
2006
;
34
(
5
):
409
-
424
.
26.
Heesters
BA
,
Myers
RC
,
Carroll
MC
.
Follicular dendritic cells: dynamic antigen libraries
.
Nat Rev Immunol
.
2014
;
14
(
7
):
495
-
504
.
27.
Gray
EE
,
Cyster
JG
.
Lymph node macrophages
.
J Innate Immun
.
2012
;
4
(
5-6
):
424
-
436
.
28.
Girard
JP
,
Moussion
C
,
Förster
R
.
HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes
.
Nat Rev Immunol
.
2012
;
12
(
11
):
762
-
773
.
29.
Bajénoff
M
,
Egen
JG
,
Koo
LY
, et al
.
Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes
.
Immunity
.
2006
;
25
(
6
):
989
-
1001
.
30.
Eisenbarth
SC
.
Dendritic cell subsets in T cell programming: location dictates function
.
Nat Rev Immunol
.
2019
;
19
(
2
):
89
-
103
.
31.
Rodda
LB
,
Lu
E
,
Bennett
ML
, et al
.
Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity
.
Immunity
.
2018
;
48
(
5
):
1014
-
1028.e6
.
32.
Sixt
M
,
Kanazawa
N
,
Selg
M
, et al
.
The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node
.
Immunity
.
2005
;
22
(
1
):
19
-
29
.
33.
Katakai
T
,
Hara
T
,
Lee
J-H
,
Gonda
H
,
Sugai
M
,
Shimizu
A
.
A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells
.
Int Immunol
.
2004
;
16
(
8
):
1133
-
1142
.
34.
Kranich
J
,
Krautler
NJ
,
Heinen
E
, et al
.
Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8
.
J Exp Med
.
2008
;
205
(
6
):
1293
-
1302
.
35.
Ansel
KM
,
Ngo
VN
,
Hyman
PL
, et al
.
A chemokine-driven positive feedback loop organizes lymphoid follicles
.
Nature
.
2000
;
406
(
6793
):
309
-
314
.
36.
Cyster
JG
,
Ansel
KM
,
Reif
K
, et al
.
Follicular stromal cells and lymphocyte homing to follicles
.
Immunol Rev
.
2000
;
176
:
181
-
193
.
37.
Rodda
LB
,
Bannard
O
,
Ludewig
B
,
Nagasawa
T
,
Cyster
JG
.
Phenotypic and morphological properties of germinal center dark zone Cxcl12-expressing reticular cells
.
J Immunol
.
2015
;
195
(
10
):
4781
-
4791
.
38.
Bannard
O
,
Horton
RM
,
Allen
CDC
,
An
J
,
Nagasawa
T
,
Cyster
JG
.
Germinal center centroblasts transition to a centrocyte phenotype according to a timed program and depend on the dark zone for effective selection
.
Immunity
.
2013
;
39
(
5
):
912
-
924
.
39.
Victora
GD
,
Nussenzweig
MC
.
Germinal centers
.
Annu Rev Immunol
.
2022
;
40
(
1
):
413
-
442
.
40.
Cyster
JG
,
Allen
CDC
.
B cell responses: cell interaction dynamics and decisions
.
Cell
.
2019
;
177
(
3
):
524
-
540
.
41.
Gerdes
MJ
,
Sevinsky
CJ
,
Sood
A
, et al
.
Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
29
):
11982
-
11987
.
42.
Radtke
AJ
,
Kandov
E
,
Lowekamp
B
, et al
.
IBEX: a versatile multiplex optical imaging approach for deep phenotyping and spatial analysis of cells in complex tissues
.
Proc Natl Acad Sci U S A
.
2020
;
117
(
52
):
33455
-
33465
.
43.
Mehrara
BJ
,
Radtke
AJ
,
Randolph
GJ
, et al
.
The emerging importance of lymphatics in health and disease: an NIH workshop report
.
J Clin Invest
.
2023
;
133
(
17
):
e171582
.
44.
Jain
S
,
Pei
L
,
Spraggins
JM
, et al
.
Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP)
.
Nat Cell Biol
.
2023
;
25
(
8
):
1089
-
1100
.
45.
Börner
K
,
Teichmann
SA
,
Quardokus
EM
, et al
.
Anatomical structures, cell types and biomarkers of the Human Reference Atlas
.
Nat Cell Biol
.
2021
;
23
(
11
):
1117
-
1128
.
46.
Khanlari
M
,
Chapman
JR
.
Follicular lymphoma: updates for pathologists
.
J Pathol Transl Med
.
2022
;
56
(
1
):
1
-
15
.
47.
Wang
SA
,
Wang
L
,
Hochberg
EP
,
Muzikansky
A
,
Harris
NL
,
Hasserjian
RP
.
Low histologic grade follicular lymphoma with high proliferation index: morphologic and clinical features
.
Am J Surg Pathol
.
2005
;
29
(
11
):
1490
-
1496
.
48.
Verdière
L
,
Mourcin
F
,
Tarte
K
.
Microenvironment signaling driving lymphomagenesis
.
Curr Opin Hematol
.
2018
;
25
(
4
):
335
-
345
.
49.
Andor
N
,
Simonds
EF
,
Czerwinski
DK
, et al
.
Single-cell RNA-seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints
.
Blood
.
2019
;
133
(
10
):
1119
-
1129
.
50.
Haebe
S
,
Shree
T
,
Sathe
A
, et al
.
Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma
.
Blood
.
2021
;
137
(
21
):
2869
-
2880
.
51.
Radtke
AJ
,
Postovalova
E
,
Varlamova
A
, et al
.
Multi-omic profiling of follicular lymphoma tumors reveals changes in tissue architecture and enhanced stromal remodeling in high-risk patients
.
Cancer Cell
.
Published online 29 February 2024
.
52.
Milpied
P
,
Cervera-Marzal
I
,
Mollichella
M-L
, et al
.
Human germinal center transcriptional programs are de-synchronized in B cell lymphoma
.
Nat Immunol
.
2018
;
19
(
9
):
1013
-
1024
.
53.
Attaf
N
,
Dong
C
,
Gil
L
, et al
.
Functional plasticity and recurrent cell states of malignant B cells in follicular lymphoma
.
bioRxiv
.
Preprint posted online 8 April 2022
.
54.
Su
W
,
Spencer
J
,
Wotherspoon
AC
.
Relative distribution of tumour cells and reactive cells in follicular lymphoma
.
J Pathol
.
2001
;
193
(
4
):
498
-
504
.
55.
Han
G
,
Deng
Q
,
Marques-Piubelli
ML
, et al
.
Follicular lymphoma microenvironment characteristics associated with tumor cell mutations and MHC class II expression
.
Blood Cancer Discov
.
2022
;
3
(
5
):
428
-
443
.
56.
Ochando
J
,
Braza
MS
.
T follicular helper cells: a potential therapeutic target in follicular lymphoma
.
Oncotarget
.
2017
;
8
(
67
):
112116
-
112131
.
57.
Hilchey
SP
,
Rosenberg
AF
,
Hyrien
O
, et al
.
Follicular lymphoma tumor–infiltrating T-helper (TH) cells have the same polyfunctional potential as normal nodal TH cells despite skewed differentiation
.
Blood
.
2011
;
118
(
13
):
3591
-
3602
.
58.
Amé-Thomas
P
,
Le Priol
J
,
Yssel
H
, et al
.
Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells
.
Leukemia
.
2012
;
26
(
5
):
1053
-
1063
.
59.
Nedelkovska
H
,
Rosenberg
AF
,
Hilchey
SP
, et al
.
Follicular lymphoma tregs have a distinct transcription profile impacting their migration and retention in the malignant lymph node
.
PLoS One
.
2016
;
11
(
5
):
e0155347
.
60.
Yang
Z-Z
,
Novak
AJ
,
Stenson
MJ
,
Witzig
TE
,
Ansell
SM
.
Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma
.
Blood
.
2006
;
107
(
9
):
3639
-
3646
.
61.
Farinha
P
,
Al-Tourah
A
,
Gill
K
,
Klasa
R
,
Connors
JM
,
Gascoyne
RD
.
The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation
.
Blood
.
2010
;
115
(
2
):
289
-
295
.
62.
Roider
T
,
Baertsch
MA
,
Fitzgerald
D
, et al
.
Multimodal and spatially resolved profiling identifies distinct patterns of T-cell infiltration in nodal B-cell lymphoma entities
.
bioRxiv
.
Preprint posted online 8 November 2022
.
63.
Melnick
AM
.
Tee-ing up a new follicular lymphoma classification system
.
Blood Cancer Discov
.
2022
;
3
(
5
):
374
-
377
.
64.
Tobin
JWD
,
Keane
C
,
Gunawardana
J
, et al
.
Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration
.
J Clin Oncol
.
2019
;
37
(
34
):
3300
-
3309
.
65.
Amé-Thomas
P
,
Maby-El Hajjami
H
,
Monvoisin
C
, et al
.
Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis
.
Blood
.
2007
;
109
(
2
):
693
-
702
.
66.
Lwin
T
,
Crespo
LA
,
Wu
A
, et al
.
Lymphoma cell adhesion-induced expression of B cell-activating factor of the TNF family in bone marrow stromal cells protects non-Hodgkin's B lymphoma cells from apoptosis
.
Leukemia
.
2009
;
23
(
1
):
170
-
177
.
67.
Brady
MT
,
Hilchey
SP
,
Hyrien
O
,
Spence
SA
,
Bernstein
SH
.
Mesenchymal stromal cells support the viability and differentiation of follicular lymphoma-infiltrating follicular helper T-cells
.
PLoS One
.
2014
;
9
(
5
):
e97597
.
68.
Grégoire
M
,
Guilloton
F
,
Pangault
C
, et al
.
Neutrophils trigger a NF-κB dependent polarization of tumor-supportive stromal cells in germinal center B-cell lymphomas
.
Oncotarget
.
2015
;
6
(
18
):
16471
-
16487
.
69.
Guilloton
F
,
Caron
G
,
Ménard
C
, et al
.
Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes
.
Blood
.
2012
;
119
(
11
):
2556
-
2567
.
70.
Mourcin
F
,
Verdière
L
,
Roulois
D
, et al
.
Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape
.
Immunity
.
2021
;
54
(
8
):
1788
-
1806.e7
.
71.
Wong
SLI
,
Sukkar
MB
.
The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease
.
Br J Pharmacol
.
2017
;
174
(
1
):
3
-
14
.
72.
Thomazy
VA
,
Vega
F
,
Medeiros
LJ
,
Davies
PJ
,
Jones
D
.
Phenotypic modulation of the stromal reticular network in normal and neoplastic lymph nodes: tissue transglutaminase reveals coordinate regulation of multiple cell types
.
Am J Pathol
.
2003
;
163
(
1
):
165
-
174
.
73.
Apoorva
FNU
,
Tian
YF
,
Pierpont
TM
, et al
.
Award Winner in the Young Investigator Category, 2017 Society for Biomaterials Annual Meeting and Exposition, Minneapolis, MN, April 05-08, 2017: lymph node stiffness-mimicking hydrogels regulate human B-cell lymphoma growth and cell surface receptor expression in a molecular subtype-specific manner
.
J Biomed Mater Res A
.
2017
;
105
(
7
):
1833
-
1844
.
74.
Jalkanen
S
,
Salmi
M
.
Lymphatic endothelial cells of the lymph node
.
Nat Rev Immunol
.
2020
;
20
(
9
):
566
-
578
.
75.
Abe
Y
,
Sakata-Yanagimoto
M
,
Fujisawa
M
, et al
.
A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling
.
Nat Cell Biol
.
2022
;
24
(
4
):
565
-
578
.
76.
Naba
A
,
Clauser
KR
,
Hoersch
S
,
Liu
H
,
Carr
SA
,
Hynes
RO
.
The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices
.
Mol Cell Proteomics
.
2012
;
11
(
4
):
M111.014647
.
77.
Zhao
Y
,
Shen
M
,
Wu
L
, et al
.
Stromal cells in the tumor microenvironment: accomplices of tumor progression?
.
Cell Death Dis
.
2023
;
14
(
9
):
587
.
78.
Angel
CE
,
Chen
C-JJ
,
Horlacher
OC
, et al
.
Distinctive localization of antigen-presenting cells in human lymph nodes
.
Blood
.
2009
;
113
(
6
):
1257
-
1267
.
79.
Amin
R
,
Mourcin
F
,
Uhel
F
, et al
.
DC-SIGN–expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma
.
Blood
.
2015
;
126
(
16
):
1911
-
1920
.
80.
Coelho
V
,
Krysov
S
,
Ghaemmaghami
AM
, et al
.
Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
43
):
18587
-
18592
.
81.
Radtke
AJ
,
Chu
CJ
,
Yaniv
Z
, et al
.
IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues
.
Nat Protoc
.
2022
;
17
(
2
):
378
-
401
.
82.
Moffitt
JR
,
Lundberg
E
,
Heyn
H
.
The emerging landscape of spatial profiling technologies
.
Nat Rev Genet
.
2022
;
23
(
12
):
741
-
759
.
83.
Vandereyken
K
,
Sifrim
A
,
Thienpont
B
,
Voet
T
.
Methods and applications for single-cell and spatial multi-omics
.
Nat Rev Genet
.
2023
;
24
(
8
):
494
-
515
.
84.
Cheng
M
,
Jiang
Y
,
Xu
J
, et al
.
Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges
.
J Genet Genom
.
2023
;
50
(
9
):
625
-
640
.
85.
Hickey
JW
,
Neumann
EK
,
Radtke
AJ
, et al
.
Spatial mapping of protein composition and tissue organization: a primer for multiplexed antibody-based imaging
.
Nat Methods
.
2022
;
19
(
3
):
284
-
295
.
86.
Shi
L
,
Wei
M
,
Miao
Y
, et al
.
Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing
.
Nat Biotechnol
.
2022
;
40
(
3
):
364
-
373
.
87.
Germain
RN
,
Radtke
AJ
,
Thakur
N
, et al
.
Understanding immunity in a tissue-centric context: combining novel imaging methods and mathematics to extract new insights into function and dysfunction
.
Immunol Rev
.
2022
;
306
(
1
):
8
-
24
.
88.
Baysoy
A
,
Bai
Z
,
Satija
R
,
Fan
R
.
The technological landscape and applications of single-cell multi-omics
.
Nat Rev Mol Cell Biol
.
2023
;
24
(
10
):
695
-
713
.
89.
Espinet
B
,
Bellosillo
B
,
Melero
C
, et al
.
FISH is better than BIOMED-2 PCR to detect IgH/BCL2 translocation in follicular lymphoma at diagnosis using paraffin-embedded tissue sections
.
Leuk Res
.
2008
;
32
(
5
):
737
-
742
.
90.
Jaffe
ES
,
Cook
JR
.
Core biopsy for lymphoma diagnosis? A needling prospect
.
Blood
.
2022
;
140
(
24
):
2525
-
2527
.
91.
Mund
A
,
Coscia
F
,
Kriston
A
, et al
.
Deep visual proteomics defines single-cell identity and heterogeneity
.
Nat Biotechnol
.
2022
;
40
(
8
):
1231
-
1240
.
92.
Lin
JR
,
Izar
B
,
Wang
S
, et al
.
Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes
.
Elife
.
2018
;
7
:
e31657
.
93.
Taube
JM
,
Akturk
G
,
Angelo
M
, et al
.
The Society for Immunotherapy of Cancer statement on best practices for multiplex immunohistochemistry (IHC) and immunofluorescence (IF) staining and validation
.
J Immunother Cancer
.
2020
;
8
(
1
):
e000155
.
94.
Quardokus
EM
,
Saunders
DC
,
McDonough
E
, et al
.
Organ Mapping Antibody Panels: a community resource for standardized multiplexed tissue imaging
.
Nat Methods
.
2023
;
20
(
8
):
1174
-
1178
.
95.
Lin
JR
,
Fallahi-Sichani
M
,
Sorger
PK
.
Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method
.
Nat Commun
.
2015
;
6
:
8390
.
96.
Huet
S
,
Tesson
B
,
Jais
J-P
, et al
.
A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts
.
Lancet Oncol
.
2018
;
19
(
4
):
549
-
561
.
97.
Roider
T
,
Seufert
J
,
Uvarovskii
A
, et al
.
Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels
.
Nat Cell Biol
.
2020
;
22
(
7
):
896
-
906
.
98.
Stoeckius
M
,
Hafemeister
C
,
Stephenson
W
, et al
.
Simultaneous epitope and transcriptome measurement in single cells
.
Nat Methods
.
2017
;
14
(
9
):
865
-
868
.
99.
Rozenblatt-Rosen
O
,
Regev
A
,
Oberdoerffer
P
, et al
.
The Human Tumor Atlas Network: charting tumor transitions across space and time at single-cell resolution
.
Cell
.
2020
;
181
(
2
):
236
-
249
.
100.
Pastore
A
,
Jurinovic
V
,
Kridel
R
, et al
.
Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry
.
Lancet Oncol
.
2015
;
16
(
9
):
1111
-
1122
.
101.
Wang
Y
,
Liu
B
,
Zhao
G
, et al
.
Spatial transcriptomics: technologies, applications and experimental considerations
.
Genomics
.
2023
;
115
(
5
):
110671
.
102.
Bagaev
A
,
Kotlov
N
,
Nomie
K
, et al
.
Conserved pan-cancer microenvironment subtypes predict response to immunotherapy
.
Cancer Cell
.
2021
;
39
(
6
):
845
-
865.e7
.
103.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
104.
Araf
S
,
Wang
J
,
Korfi
K
, et al
.
Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma
.
Leukemia
.
2018
;
32
(
5
):
1261
-
1265
.
105.
Zaitsev
A
,
Chelushkin
M
,
Dyikanov
D
, et al
.
Precise reconstruction of the TME using bulk RNA-seq and a machine learning algorithm trained on artificial transcriptomes
.
Cancer Cell
.
2022
;
40
(
8
):
879
-
894.e16
.
You do not currently have access to this content.
Sign in via your Institution