Abstract

There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region–specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell–specific ICAM-3–grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell–like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.

1.
Stevenson
FK
,
Forconi
F
,
Packham
G
.
The meaning and relevance of B-cell receptor structure and function in chronic lymphocytic leukemia
.
Semin Hematol
.
2014
;
51
(
3
):
158
-
167
.
2.
Kuppers
R
,
Stevenson
FK
.
Critical influences on the pathogenesis of follicular lymphoma
.
Blood
.
2018
;
131
(
21
):
2297
-
2306
.
3.
Zhu
D
,
McCarthy
H
,
Ottensmeier
CH
,
Johnson
P
,
Hamblin
TJ
,
Stevenson
FK
.
Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma
.
Blood
.
2002
;
99
(
7
):
2562
-
2568
.
4.
Radcliffe
CM
,
Arnold
JN
,
Suter
DM
, et al
.
Human follicular lymphoma cells contain oligomannose glycans in the antigen-binding site of the B-cell receptor
.
J Biol Chem
.
2007
;
282
(
10
):
7405
-
7415
.
5.
Coelho
V
,
Krysov
S
,
Ghaemmaghami
AM
, et al
.
Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
43
):
18587
-
18592
.
6.
Roulland
S
,
Navarro
JM
,
Grenot
P
, et al
.
Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis
.
J Exp Med
.
2006
;
203
(
11
):
2425
-
2431
.
7.
Milpied
P
,
Gandhi
AK
,
Cartron
G
, et al
.
Follicular lymphoma dynamics
.
Adv Immunol
.
2021
;
150
:
43
-
103
.
8.
Mamessier
E
,
Drevet
C
,
Broussais-Guillaumot
F
, et al
.
Contiguous follicular lymphoma and follicular lymphoma in situ harboring N-glycosylated sites
.
Haematologica
.
2015
;
100
(
4
):
e155
-
e157
.
9.
Kosmidis
P
,
Bonzheim
I
,
Dufke
C
, et al
.
Next generation sequencing of the clonal IGH rearrangement detects ongoing mutations and interfollicular trafficking in in situ follicular neoplasia
.
PLoS One
.
2017
;
12
(
6
):
e0178503
.
10.
Amin
R
,
Mourcin
F
,
Uhel
F
, et al
.
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma
.
Blood
.
2015
;
126
(
16
):
1911
-
1920
.
11.
Feinberg
H
,
Mitchell
DA
,
Drickamer
K
,
Weis
WI
.
Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR
.
Science
.
2001
;
294
(
5549
):
2163
-
2166
.
12.
Linley
A
,
Krysov
S
,
Ponzoni
M
,
Johnson
PW
,
Packham
G
,
Stevenson
FK
.
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells
.
Blood
.
2015
;
126
(
16
):
1902
-
1910
.
13.
Chiodin
G
,
Allen
JD
,
Bryant
DJ
, et al
.
Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior
.
Blood
.
2021
;
138
(
17
):
1570
-
1582
.
14.
Calvo
KR
,
Dabir
B
,
Kovach
A
, et al
.
IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma
.
Blood
.
2008
;
112
(
9
):
3818
-
3826
.
15.
Chiodin
G
,
Tatterton
D
,
Duriez
PJ
, et al
.
DC-SIGN binding to the oligomannose-type glycans on the surface immunoglobulin variable region of follicular lymphoma promotes selective adhesion to microenvironmental VCAM-1
.
Blood
.
2022
;
140
(
suppl 1
):
6460
-
6461
.
16.
Petrasch
S
,
Brittinger
G
,
Wacker
HH
,
Schmitz
J
,
Kosco-Vilbois
M
.
Follicular dendritic cells in non-Hodgkin's lymphomas
.
Leuk Lymphoma
.
1994
;
15
(
1-2
):
33
-
43
.
17.
Lamaison
C
,
Tarte
K
.
B cell/stromal cell crosstalk in health, disease, and treatment: follicular lymphoma as a paradigm
.
Immunol Rev
.
2021
;
302
(
1
):
273
-
285
.
18.
Liu
YJ
,
Grouard
G
,
de Bouteiller
O
,
Banchereau
J
.
Follicular dendritic cells and germinal centers
.
Int Rev Cytol
.
1996
;
166
:
139
-
179
.
19.
Kamel
OW
.
Unraveling the mystery of the lymphoid follicle
.
Am J Pathol
.
1999
;
155
(
3
):
681
-
682
.
20.
Heesters
BA
,
Chatterjee
P
,
Kim
YA
, et al
.
Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation
.
Immunity
.
2013
;
38
(
6
):
1164
-
1175
.
21.
Zabalegui
N
,
de Cerio
AL
,
Inoges
S
, et al
.
Acquired potential N-glycosylation sites within the tumor-specific immunoglobulin heavy chains of B-cell malignancies
.
Haematologica
.
2004
;
89
(
5
):
541
-
546
.
22.
Cha
SC
,
Qin
H
,
Kannan
S
, et al
.
Nonstereotyped lymphoma B cell receptors recognize vimentin as a shared autoantigen
.
J Immunol
.
2013
;
190
(
9
):
4887
-
4898
.
23.
McCann
KJ
,
Ottensmeier
CH
,
Callard
A
, et al
.
Remarkable selective glycosylation of the immunoglobulin variable region in follicular lymphoma
.
Mol Immunol
.
2008
;
45
(
6
):
1567
-
1572
.
24.
Xiang
Y
,
Karaveg
K
,
Moremen
KW
.
Substrate recognition and catalysis by GH47 alpha-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
49
):
E7890
-
E7899
.
25.
Behrens
AJ
,
Crispin
M
.
Structural principles controlling HIV envelope glycosylation
.
Curr Opin Struct Biol
.
2017
;
44
:
125
-
133
.
26.
Schneider
D
,
Duhren-von Minden
M
,
Alkhatib
A
, et al
.
Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma
.
Blood
.
2015
;
125
(
21
):
3287
-
3296
.
27.
Vletter
EM
,
Koning
MT
,
Scherer
HU
,
Veelken
H
,
Toes
REM
.
A comparison of immunoglobulin variable region N-linked glycosylation in healthy donors, autoimmune disease and lymphoma
.
Front Immunol
.
2020
;
11
:
241
.
28.
Koers
J
,
Sciarrillo
R
,
Derksen
NIL
, et al
.
Differences in IgG autoantibody Fab glycosylation across autoimmune diseases
.
J Allergy Clin Immunol. Jun
.
2023
;
151
(
6
):
1646
-
1654
.
29.
Odabashian
M
,
Carlotti
E
,
Araf
S
, et al
.
IGHV sequencing reveals acquired N-glycosylation sites as a clonal and stable event during follicular lymphoma evolution
.
Blood
.
2020
;
135
(
11
):
834
-
844
.
30.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
31.
Leich
E
,
Maier
C
,
Bomben
R
, et al
.
Follicular lymphoma subgroups with and without t(14;18) differ in their N-glycosylation pattern and IGHV usage
.
Blood Adv
.
2021
;
5
(
23
):
4890
-
4900
.
32.
Sebastian
E
,
Alcoceba
M
,
Balanzategui
A
, et al
.
Molecular characterization of immunoglobulin gene rearrangements in diffuse large B-cell lymphoma: antigen-driven origin and IGHV4-34 as a particular subgroup of the non-GCB subtype
.
Am J Pathol
.
2012
;
181
(
5
):
1879
-
1888
.
33.
Young
RM
,
Wu
T
,
Schmitz
R
, et al
.
Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
44
):
13447
-
13454
.
34.
Kotlov
N
,
Bagaev
A
,
Revuelta
MV
, et al
.
Clinical and biological subtypes of B-cell lymphoma revealed by microenvironmental signatures
.
Cancer Discov
.
2021
;
11
(
6
):
1468
-
1489
.
35.
Magrath
I
.
The pathogenesis of Burkitt's lymphoma
.
Adv Cancer Res
.
1990
;
55
:
133
-
270
.
36.
Bock
T
,
Bewarder
M
,
Cetin
O
, et al
.
B-cell receptors of EBV-negative Burkitt lymphoma bind modified isoforms of autoantigens
.
EJHaem
.
2022
;
3
(
3
):
739
-
747
.
37.
Corso
J
,
Pan
KT
,
Walter
R
, et al
.
Elucidation of tonic and activated B-cell receptor signaling in Burkitt's lymphoma provides insights into regulation of cell survival
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
20
):
5688
-
5693
.
38.
Zhu
D
,
Ottensmeier
CH
,
Du
MQ
,
McCarthy
H
,
Stevenson
FK
.
Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt's lymphoma and mucosa-associated lymphoid tissue lymphoma
.
Br J Haematol
.
2003
;
120
(
2
):
217
-
222
.
39.
Arnold
JN
,
Mitchell
DA
.
Tinker, tailor, soldier, cell: the role of C-type lectins in the defense and promotion of disease
.
Protein Cell
.
2023
;
14
(
1
):
4
-
16
.
40.
Geijtenbeek
TB
,
Kwon
DS
,
Torensma
R
, et al
.
DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells
.
Cell
.
2000
;
100
(
5
):
587
-
597
.
41.
Gringhuis
SI
,
den Dunnen
J
,
Litjens
M
,
van Het Hof
B
,
van Kooyk
Y
,
Geijtenbeek
TB
.
C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB
.
Immunity
.
2007
;
26
(
5
):
605
-
616
.
42.
Valle-Argos
B
,
Chiodin
G
,
Bryant
DJ
, et al
.
DC-SIGN binding to mannosylated B-cell receptors in follicular lymphoma down-modulates receptor signaling capacity
.
Sci Rep
.
2021
;
11
(
1
):
11676
.
43.
Tacken
PJ
,
Ter Huurne
M
,
Torensma
R
,
Figdor
CG
.
Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking
.
Eur J Immunol
.
2012
;
42
(
8
):
1989
-
1998
.
44.
Huang
MJ
,
Osborn
L
,
Svahn
J
, et al
.
Expression of vascular cell adhesion molecule-1 by follicular dendritic cells
.
Leuk Lymphoma
.
1995
;
18
(
3-4
):
259
-
264
.
45.
Merino
R
,
Grillot
DA
,
Simonian
PL
, et al
.
Modulation of anti-IgM-induced B cell apoptosis by Bcl-xL and CD40 in WEHI-231 cells. Dissociation from cell cycle arrest and dependence on the avidity of the antibody-IgM receptor interaction
.
J Immunol
.
1995
;
155
(
8
):
3830
-
3838
.
46.
Petlickovski
A
,
Laurenti
L
,
Li
X
, et al
.
Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells
.
Blood
.
2005
;
105
(
12
):
4820
-
4827
.
47.
Savelyeva
N
,
Shipton
M
,
Suchacki
A
,
Babbage
G
,
Stevenson
FK
.
High-affinity memory B cells induced by conjugate vaccines against weak tumor antigens are vulnerable to nonconjugated antigen
.
Blood
.
2011
;
118
(
3
):
650
-
659
.
48.
Gold
MR
,
Reth
MG
.
Antigen receptor function in the context of the nanoscale organization of the B cell membrane
.
Annu Rev Immunol
.
2019
;
37
:
97
-
123
.
49.
Grigorian
A
,
Torossian
S
,
Demetriou
M
.
T-cell growth, cell surface organization, and the galectin-glycoprotein lattice
.
Immunol Rev
.
2009
;
230
(
1
):
232
-
246
.
50.
Green
MR
,
Gentles
AJ
,
Nair
RV
, et al
.
Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma
.
Blood
.
2013
;
121
(
9
):
1604
-
1611
.
51.
Schroers-Martin
JG
,
Soo
J
,
Brisou
G
, et al
.
Tracing founder mutations in circulating and tissue-resident follicular lymphoma precursors
.
Cancer Discov
.
2023
;
13
(
6
):
1310
-
1323
.
52.
Dreval
K
,
Hilton
LK
,
Cruz
M
, et al
.
Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns
.
Blood
.
2023
;
142
(
6
):
561
-
573
.
53.
Kridel
R
,
Xerri
L
,
Gelas-Dore
B
, et al
.
The prognostic impact of CD163-positive macrophages in follicular lymphoma: a study from the BC Cancer Agency and the Lymphoma Study Association
.
Clin Cancer Res
.
2015
;
21
(
15
):
3428
-
3435
.
54.
Gouni
S
,
Marques-Piubelli
ML
,
Strati
P
.
Follicular lymphoma and macrophages: impact of approved and novel therapies
.
Blood Adv
.
2021
;
5
(
20
):
4303
-
4312
.
55.
Green
MR
,
Kihira
S
,
Liu
CL
, et al
.
Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
10
):
E1116
-
E1125
.
56.
Araf
S
,
Okosun
J
,
Koniali
L
,
Fitzgibbon
J
,
Heward
J
.
Epigenetic dysregulation in follicular lymphoma
.
Epigenomics
.
2016
;
8
(
1
):
77
-
84
.
57.
Laurent
C
,
Dietrich
S
,
Tarte
K
.
Cell cross talk within the lymphoma tumor microenvironment: follicular lymphoma as a paradigm
.
Blood
.
2024
;
143
(
12
):
1080
-
1090
.
58.
Tacken
PJ
,
Ginter
W
,
Berod
L
, et al
.
Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation
.
Blood
.
2011
;
118
(
15
):
4111
-
4119
.
59.
Radtke
AJ
,
Roschewski
M
.
The follicular lymphoma tumor microenvironment at single-cell and spatial resolution
.
Blood
.
2024
;
143
(
12
):
1069
-
1079
.
You do not currently have access to this content.
Sign in via your Institution