Abstract

Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.

1.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus Classification of Mature Lymphoid Neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
2.
Victora
GD
,
Nussenzweig
MC
.
Germinal centers
.
Annu Rev Immunol
.
2022
;
40
:
413
-
442
.
3.
Roco
JA
,
Mesin
L
,
Binder
SC
, et al
.
Class-switch recombination occurs infrequently in germinal centers
.
Immunity
.
2019
;
51
(
2
):
337
-
350.e7
.
4.
Chen
ST
,
Oliveira
TY
,
Gazumyan
A
,
Cipolla
M
,
Nussenzweig
MC
.
B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection
.
Immunity
.
2023
;
56
(
3
):
547
-
561.e7
.
5.
Stebegg
M
,
Kumar
SD
,
Silva-Cayetano
A
,
Fonseca
VR
,
Linterman
MA
,
Graca
L
.
Regulation of the germinal center response
.
Front Immunol
.
2018
;
9
:
2469
.
6.
Mayer
CT
,
Gazumyan
A
,
Kara
EE
, et al
.
The microanatomic segregation of selection by apoptosis in the germinal center
.
Science
.
2017
;
358
(
6360
):
eaao2602
.
7.
Lamaison
C
,
Tarte
K
.
B cell/stromal cell crosstalk in health, disease, and treatment: follicular lymphoma as a paradigm
.
Immunol Rev
.
2021
;
302
(
1
):
273
-
285
.
8.
Pikor
NB
,
Cheng
H-W
,
Onder
L
,
Ludewig
B
.
Development and immunological function of lymph node stromal cells
.
J Immunol
.
2021
;
206
(
2
):
257
-
263
.
9.
Crotty
S T
.
Follicular Helper cell biology: a decade of discovery and diseases
.
Immunity
.
2019
;
50
(
5
):
1132
-
1148
.
10.
Endres
R
,
Alimzhanov
MB
,
Plitz
T
, et al
.
Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells
.
J Exp Med
.
1999
;
189
(
1
):
159
-
168
.
11.
Dubey
LK
,
Lebon
L
,
Mosconi
I
, et al
.
Lymphotoxin-dependent B cell-FRC crosstalk promotes de novo follicle formation and antibody production following intestinal Helminth infection
.
Cell Rep
.
2016
;
15
(
7
):
1527
-
1541
.
12.
Gregory
JL
,
Walter
A
,
Alexandre
YO
, et al
.
infection programs sustained lymphoid stromal cell responses and shapes lymph node remodeling upon secondary challenge
.
Cell Rep
.
2017
;
18
(
2
):
406
-
418
.
13.
Dubey
LK
,
Karempudi
P
,
Luther
SA
,
Ludewig
B
,
Harris
NL
.
Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis
.
Nat Commun
.
2017
;
8
(
1
):
367
.
14.
Laurent
C
,
Müller
S
,
Do
C
, et al
.
Distribution, function, and prognostic value of cytotoxic T lymphocytes in follicular lymphoma: a 3-D tissue-imaging study
.
Blood
.
2011
;
118
(
20
):
5371
-
5379
.
15.
Clear
AJ
,
Lee
AM
,
Calaminici
M
, et al
.
Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment
.
Blood
.
2010
;
115
(
24
):
5053
-
5056
.
16.
Katzenberger
T
,
Kalla
J
,
Leich
E
, et al
.
A distinctive subtype of t(14;18)-negative nodal follicular non-Hodgkin lymphoma characterized by a predominantly diffuse growth pattern and deletions in the chromosomal region 1p36
.
Blood
.
2009
;
113
(
5
):
1053
-
1061
.
17.
Milpied
P
,
Gandhi
AK
,
Cartron
G
, et al
.
Follicular lymphoma dynamics
.
Adv Immunol
.
2021
;
150
:
43
-
103
.
18.
Brauge
B
,
Dessauge
E
,
Creusat
F
,
Tarte
K
.
Modeling the crosstalk between malignant B cells and their microenvironment in B-cell lymphomas: challenges and opportunities
.
Front Immunol
.
2023
;
14
:
1288110
.
19.
Dumontet
E
,
Mancini
SJC
,
Tarte
K
.
Bone marrow lymphoid niche adaptation to mature B cell neoplasms
.
Front Immunol
.
2021
;
12
:
784691
.
20.
Han
G
,
Deng
Q
,
Marques-Piubelli
ML
, et al
.
Follicular lymphoma microenvironment characteristics associated with tumor cell mutations and MHC class II expression
.
Blood Cancer Discov
.
2022
;
3
(
5
):
428
-
443
.
21.
Roider
T
,
Seufert
J
,
Uvarovskii
A
, et al
.
Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels
.
Nat Cell Biol
.
2020
;
22
(
7
):
896
-
906
.
22.
Roider
T
,
Baertsch
MA
,
Fitzgerald
D
, et al
.
Multimodal and spatially resolved profiling identifies distinct patterns of T-cell infiltration in nodal B-cell lymphoma entities
.
bioRxiv
.
Preprint posted online 8 November 2022
.
23.
Amé-Thomas
P
,
Hoeller
S
,
Artchounin
C
, et al
.
CD10 delineates a subset of human IL-4 producing follicular helper T cells involved in the survival of follicular lymphoma B cells
.
Blood
.
2015
;
125
(
15
):
2381
-
2385
.
24.
Pangault
C
,
Amé-Thomas
P
,
Ruminy
P
, et al
.
Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis
.
Leukemia
.
2010
;
24
(
12
):
2080
-
2089
.
25.
Desmots
F
,
Roussel
M
,
Pangault
C
, et al
.
Pan-HDAC inhibitors restore PRDM1 response to IL21 in CREBBP-mutated follicular lymphoma
.
Clin Cancer Res
.
2019
;
25
(
2
):
735
-
746
.
26.
Epron
G
,
Ame-Thomas
P
,
Le Priol
J
, et al
.
Monocytes and T cells cooperate to favor normal and follicular lymphoma B-cell growth: role of IL-15 and CD40L signaling
.
Leukemia
.
2012
;
26
(
1
):
139
-
148
.
27.
Amin
R
,
Mourcin
F
,
Uhel
F
, et al
.
DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma
.
Blood
.
2015
;
126
(
16
):
1911
-
1920
.
28.
Stevenson
FK
,
Forconi
F
.
The essential microenvironmental role of oligomannoses specifically inserted into the antigen-binding sites of lymphoma cells
.
Blood
.
2024
;
143
(
12
):
1091
-
1100
.
29.
Rawal
S
,
Chu
F
,
Zhang
M
, et al
.
Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment
.
J Immunol
.
2013
;
190
(
12
):
6681
-
6693
.
30.
Boice
M
,
Salloum
D
,
Mourcin
F
, et al
.
Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells
.
Cell
.
2016
;
167
(
2
):
405
-
418.e13
.
31.
Pandey
S
,
Mourcin
F
,
Marchand
T
, et al
.
IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma
.
Blood
.
2017
;
129
(
18
):
2507
-
2518
.
32.
Mentz
M
,
Keay
W
,
Strobl
CD
, et al
.
PARP14 is a novel target in STAT6 mutant follicular lymphoma
.
Leukemia
.
2022
;
36
(
9
):
2281
-
2292
.
33.
Gravelle
P
,
Do
C
,
Franchet
C
, et al
.
Impaired functional responses in follicular lymphoma CD8+TIM-3+ T lymphocytes following TCR engagement
.
Oncoimmunology
.
2016
;
5
(
10
):
e1224044
.
34.
Andor
N
,
Simonds
EF
,
Czerwinski
DK
, et al
.
Single-cell RNA-seq of follicular lymphoma reveals malignant B-cell types and coexpression of T-cell immune checkpoints
.
Blood
.
2019
;
133
(
10
):
1119
-
1129
.
35.
Josefsson
SE
,
Huse
K
,
Kolstad
A
, et al
.
T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling
.
Clin Cancer Res
.
2018
;
24
(
4
):
870
-
881
.
36.
Yang
Z-Z
,
Kim
HJ
,
Villasboas
JC
, et al
.
Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma
.
Oncotarget
.
2017
;
8
(
37
):
61425
-
61439
.
37.
Yang
Z-Z
,
Kim
HJ
,
Wu
H
, et al
.
TIGIT expression is associated with t-cell suppression and exhaustion and predicts clinical outcome and anti-PD-1 response in follicular lymphoma
.
Clin Cancer Res
.
2020
;
26
(
19
):
5217
-
5231
.
38.
Le
K-S
,
Thibult
M-L
,
Just-Landi
S
, et al
.
Follicular B lymphomas generate regulatory T cells via the ICOS/ICOSL pathway and are susceptible to treatment by anti-ICOS/ICOSL therapy
.
Cancer Res
.
2016
;
76
(
16
):
4648
-
4660
.
39.
Yang
Z-Z
,
Kim
HJ
,
Villasboas
JC
, et al
.
Mass cytometry analysis reveals that specific intratumoral CD4+ T cell subsets correlate with patient survival in follicular lymphoma
.
Cell Rep
.
2019
;
26
(
8
):
2178
-
2193.e3
.
40.
Kiaii
S
,
Clear
AJ
,
Ramsay
AG
, et al
.
Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation
.
J Clin Oncol
.
2013
;
31
(
21
):
2654
-
2661
.
41.
Ramsay
AG
,
Clear
AJ
,
Kelly
G
, et al
.
Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy
.
Blood
.
2009
;
114
(
21
):
4713
-
4720
.
42.
Amé-Thomas
P
,
Le Priol
J
,
Yssel
H
, et al
.
Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells
.
Leukemia
.
2012
;
26
(
5
):
1053
-
1063
.
43.
Dheilly
E
,
Battistello
E
,
Katanayeva
N
, et al
.
Cathepsin S regulates antigen processing and T cell activity in non-Hodgkin lymphoma
.
Cancer Cell
.
2020
;
37
(
5
):
674
-
689.e12
.
44.
Bararia
D
,
Hildebrand
JA
,
Stolz
S
, et al
.
Cathepsin S alterations induce a tumor-promoting immune microenvironment in follicular lymphoma
.
Cell Rep
.
2020
;
31
(
5
):
107522
.
45.
Pangault
C
,
Amé-Thomas
P
,
Rossille
D
, et al
.
Integrative analysis of cell crosstalk within follicular lymphoma cell niche: towards a definition of the FL supportive synapse
.
Cancers (Basel)
.
2020
;
12
(
10
):
2865
.
46.
Haebe
S
,
Shree
T
,
Sathe
A
, et al
.
Single-cell analysis can define distinct evolution of tumor sites in follicular lymphoma
.
Blood
.
2021
;
137
(
21
):
2869
-
2880
.
47.
Myklebust
JH
,
Irish
JM
,
Brody
J
, et al
.
High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells
.
Blood
.
2013
;
121
(
8
):
1367
-
1376
.
48.
Yang
Z-Z
,
Novak
AJ
,
Ziesmer
SC
,
Witzig
TE
,
Ansell
SM
.
Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin’s lymphoma
.
Cancer Res
.
2009
;
69
(
13
):
5522
-
5530
.
49.
Yang
Z-Z
,
Grote
DM
,
Xiu
B
, et al
.
TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma
.
Leukemia
.
2014
;
28
(
9
):
1872
-
1884
.
50.
Yang
Z-Z
,
Grote
DM
,
Ziesmer
SC
, et al
.
Soluble and membrane-bound TGF-β-mediated regulation of intratumoral T cell differentiation and function in B-cell non-Hodgkin lymphoma
.
PLoS One
.
2013
;
8
(
3
):
e59456
.
51.
Le Coz
C
,
Oldridge
DA
,
Herati
RS
, et al
.
Human T follicular helper clones seed the germinal center-resident regulatory pool
.
Sci Immunol
.
2023
;
8
(
82
):
eade8162
.
52.
Gertner-Dardenne
J
,
Fauriat
C
,
Orlanducci
F
, et al
.
The co-receptor BTLA negatively regulates human Vγ9Vδ2 T-cell proliferation: a potential way of immune escape for lymphoma cells
.
Blood
.
2013
;
122
(
6
):
922
-
931
.
53.
Germain
C
,
Guillaudeux
T
,
Galsgaard
ED
, et al
.
Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin’s lymphomas dampening natural killer cell functions
.
Oncoimmunology
.
2015
;
4
(
8
):
e1026503
.
54.
Mourcin
F
,
Verdière
L
,
Roulois
D
, et al
.
Follicular lymphoma triggers phenotypic and functional remodeling of the human lymphoid stromal cell landscape
.
Immunity
.
2021
;
54
(
8
):
1788
-
1806.e7
.
55.
Weissmann
M
,
Arvatz
G
,
Horowitz
N
, et al
.
Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
3
):
704
-
709
.
56.
Chang
K-C
,
Huang
X
,
Medeiros
LJ
,
Jones
D
.
Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma
.
J Pathol
.
2003
;
201
(
3
):
404
-
412
.
57.
Pepe
G
,
Di Napoli
A
,
Cippitelli
C
,
Scarpino
S
,
Pilozzi
E
,
Ruco
L
.
Reduced lymphotoxin-beta production by tumour cells is associated with loss of follicular dendritic cell phenotype and diffuse growth in follicular lymphoma
.
J Pathol Clin Res
.
2018
;
4
(
2
):
124
-
134
.
58.
Duan
L
,
Liu
D
,
Chen
H
, et al
.
Follicular dendritic cells restrict interleukin-4 availability in germinal centers and foster memory B cell generation
.
Immunity
.
2021
;
54
(
10
):
2256
-
2272.e6
.
59.
Abe
Y
,
Sakata-Yanagimoto
M
,
Fujisawa
M
, et al
.
A single-cell atlas of non-haematopoietic cells in human lymph nodes and lymphoma reveals a landscape of stromal remodelling
.
Nat Cell Biol
.
2022
;
24
(
4
):
565
-
578
.
60.
Tian
YF
,
Ahn
H
,
Schneider
RS
, et al
.
Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells
.
Biomaterials
.
2015
;
73
:
110
-
119
.
61.
Lamaison
C
,
Latour
S
,
Hélaine
N
, et al
.
A novel 3D culture model recapitulates primary FL B-cell features and promotes their survival
.
Blood Adv
.
2021
;
5
(
23
):
5372
-
5386
.
62.
Gallouet
A-S
,
Travert
M
,
Bresson-Bepoldin
L
, et al
.
COX-2-independent effects of celecoxib sensitize lymphoma B cells to TRAIL-mediated apoptosis
.
Clin Cancer Res
.
2014
;
20
(
10
):
2663
-
2673
.
63.
Guilloton
F
,
Caron
G
,
Ménard
C
, et al
.
Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes
.
Blood
.
2012
;
119
(
11
):
2556
-
2567
.
64.
Linley
A
,
Krysov
S
,
Ponzoni
M
,
Johnson
PW
,
Packham
G
,
Stevenson
FK
.
Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells
.
Blood
.
2015
;
126
(
16
):
1902
-
1910
.
65.
Chao
MP
,
Alizadeh
AA
,
Tang
C
, et al
.
Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma
.
Cell
.
2010
;
142
(
5
):
699
-
713
.
66.
Chen
Y-P
,
Kim
HJ
,
Wu
H
, et al
.
SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma
.
Blood Cancer J
.
2019
;
9
(
10
):
84
.
67.
Gravelle
P
,
Burroni
B
,
Péricart
S
, et al
.
Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies
.
Oncotarget
.
2017
;
8
(
27
):
44960
-
44975
.
68.
Masaki
A
,
Ishida
T
,
Maeda
Y
, et al
.
Clinical significance of tryptophan catabolism in follicular lymphoma
.
Hematol Oncol
.
2020
;
38
(
5
):
742
-
753
.
69.
Carbonnelle-Puscian
A
,
Copie-Bergman
C
,
Baia
M
, et al
.
The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages
.
Leukemia
.
2009
;
23
(
5
):
952
-
960
.
70.
Béguelin
W
,
Teater
M
,
Meydan
C
, et al
.
Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response
.
Cancer Cell
.
2020
;
37
(
5
):
655
-
673.e11
.
71.
Dulong
J
,
Loisel
S
,
Rossille
D
, et al
.
CD40L-expressing CD4+ T cells prime adipose-derived stromal cells to produce inflammatory chemokines
.
Cytotherapy
.
2022
;
24
(
5
):
500
-
507
.
72.
Maby-El Hajjami
H
,
Amé-Thomas
P
,
Pangault
C
, et al
.
Functional alteration of the lymphoma stromal cell niche by the cytokine context: role of indoleamine-2,3 dioxygenase
.
Cancer Res
.
2009
;
69
(
7
):
3228
-
3237
.
73.
Misiak
J
,
Jean
R
,
Rodriguez
S
, et al
.
Human lymphoid stromal cells contribute to polarization of follicular t cells into IL-4 secreting cells
.
Front Immunol
.
2020
;
11
:
559866
.
74.
Bognár
A
,
Csernus
B
,
Bödör
C
, et al
.
Clonal selection in the bone marrow involvement of follicular lymphoma
.
Leukemia
.
2005
;
19
(
9
):
1656
-
1662
.
75.
Araf
S
,
Wang
J
,
Korfi
K
, et al
.
Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma
.
Leukemia
.
2018
;
32
(
5
):
1261
-
1265
.
76.
Dumontet
E
,
Pangault
C
,
Roulois
D
, et al
.
Extracellular vesicles shed by follicular lymphoma B cells promote polarization of the bone marrow stromal cell niche
.
Blood
.
2021
;
138
(
1
):
57
-
70
.
77.
Wahlin
BE
,
Sander
B
,
Christensson
B
, et al
.
Entourage: the immune microenvironment following follicular lymphoma
.
Blood Cancer J
.
2012
;
2
(
1
):
e52
.
78.
Sangaletti
S
,
Tripodo
C
,
Portararo
P
, et al
.
Stromal niche communalities underscore the contribution of the matricellular protein SPARC to B-cell development and lymphoid malignancies
.
Oncoimmunology
.
2014
;
3
:
e28989
.
79.
Rajnai
H
,
Bödör
C
,
Balogh
Z
, et al
.
Impact of the reactive microenvironment on the bone marrow involvement of follicular lymphoma
.
Histopathology
.
2012
;
60
(
6B
):
E66
-
75
.
80.
Milpied
P
,
Cervera-Marzal
I
,
Mollichella
M-L
, et al
.
Human germinal center transcriptional programs are de-synchronized in B cell lymphoma
.
Nat Immunol
.
2018
;
19
(
9
):
1013
-
1024
.
81.
Tellier
J
,
Menard
C
,
Roulland
S
, et al
.
Human t(14;18)positive germinal center B cells: a new step in follicular lymphoma pathogenesis?
.
Blood
.
2014
;
123
(
22
):
3462
-
3465
.
82.
Sungalee
S
,
Mamessier
E
,
Morgado
E
, et al
.
Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression
.
J Clin Invest
.
2014
;
124
(
12
):
5337
-
5351
.
83.
Al-Tourah
AJ
,
Gill
KK
,
Chhanabhai
M
, et al
.
Population-based analysis of incidence and outcome of transformed non-Hodgkin’s lymphoma
.
J Clin Oncol
.
2008
;
26
(
32
):
5165
-
5169
.
84.
Kridel
R
,
Mottok
A
,
Farinha
P
, et al
.
Cell of origin of transformed follicular lymphoma
.
Blood
.
2015
;
126
(
18
):
2118
-
2127
.
85.
Blaker
YN
,
Spetalen
S
,
Brodtkorb
M
, et al
.
The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era
.
Br J Haematol
.
2016
;
175
(
1
):
102
-
114
.
86.
Smeltzer
JP
,
Jones
JM
,
Ziesmer
SC
, et al
.
Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma
.
Clin Cancer Res
.
2014
;
20
(
11
):
2862
-
2872
.
87.
Glas
AM
,
Knoops
L
,
Delahaye
L
, et al
.
Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma
.
J Clin Oncol
.
2007
;
25
(
4
):
390
-
398
.
88.
Dreval
K
,
Hilton
LK
,
Cruz
M
, et al
.
Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns
.
Blood
.
2023
;
142
(
6
):
561
-
573
.
89.
Wang
X
,
Nissen
M
,
Gracias
D
, et al
.
Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk
.
Nat Commun
.
2022
;
13
(
1
):
6772
.
90.
Inoue
H
,
Rai
S
,
Tanaka
H
, et al
.
Tumour-immune microenvironment in duodenal-type follicular lymphoma
.
Br J Haematol
.
2020
;
191
(
2
):
243
-
252
.
91.
Takata
K
,
Tanino
M
,
Ennishi
D
, et al
.
Duodenal follicular lymphoma: comprehensive gene expression analysis with insights into pathogenesis
.
Cancer Sci
.
2014
;
105
(
5
):
608
-
615
.
92.
Hellmuth
JC
,
Louissaint
A
,
Szczepanowski
M
, et al
.
Duodenal-type and nodal follicular lymphomas differ by their immune microenvironment rather than their mutation profiles
.
Blood
.
2018
;
132
(
16
):
1695
-
1702
.
93.
Takata
K
,
Sato
Y
,
Nakamura
N
, et al
.
Duodenal follicular lymphoma lacks AID but expresses BACH2 and has memory B-cell characteristics
.
Mod Pathol
.
2013
;
26
(
1
):
22
-
31
.
94.
Leich
E
,
Salaverria
I
,
Bea
S
, et al
.
Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations
.
Blood
.
2009
;
114
(
4
):
826
-
834
.
95.
Leich
E
,
Maier
C
,
Bomben
R
, et al
.
Follicular lymphoma subgroups with and without t(14;18) differ in their N-glycosylation pattern and IGHV usage
.
Blood Adv
.
2021
;
5
(
23
):
4890
-
4900
.
96.
Dave
SS
,
Wright
G
,
Tan
B
, et al
.
Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells
.
N Engl J Med
.
2004
;
351
(
21
):
2159
-
2169
.
97.
Carreras
J
,
Lopez-Guillermo
A
,
Fox
BC
, et al
.
High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma
.
Blood
.
2006
;
108
(
9
):
2957
-
2964
.
98.
Tobin
JWD
,
Keane
C
,
Gunawardana
J
, et al
.
Progression of disease within 24 months in follicular lymphoma is associated with reduced intratumoral immune infiltration
.
J Clin Oncol
.
2019
;
37
(
34
):
3300
-
3309
.
99.
Mondello
P
,
Fama
A
,
Larson
MC
, et al
.
Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma
.
Blood Cancer J
.
2021
;
11
(
7
):
130
.
100.
Song
L
,
Cohen
D
,
Ouyang
Z
,
Cao
Y
,
Hu
X
,
Liu
XS
.
TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data
.
Nat Methods
.
2021
;
18
(
6
):
627
-
630
.
101.
Bolotin
DA
,
Poslavsky
S
,
Davydov
AN
, et al
.
Antigen receptor repertoire profiling from RNA-seq data
.
Nat Biotechnol
.
2017
;
35
(
10
):
908
-
911
.
102.
Radtke
AJ
,
Roschewski
M
.
The follicular lymphoma tumor microenvironment at single-cell and spatial resolution
.
Blood
.
2024
;
143
(
12
):
1069
-
1079
.
103.
Ménard
C
,
Rossille
D
,
Dulong
J
, et al
.
Lenalidomide triggers T-cell effector functions in vivo in patients with follicular lymphoma
.
Blood Adv
.
2021
;
5
(
8
):
2063
-
2074
.
104.
Morschhauser
F
,
Fowler
NH
,
Feugier
P
, et al
.
Rituximab plus lenalidomide in advanced untreated follicular lymphoma
.
N Engl J Med
.
2018
;
379
(
10
):
934
-
947
.
105.
Falchi
L
,
Vardhana
SA
,
Salles
GA
.
Bispecific antibodies for the treatment of B-cell lymphoma: promises, unknowns, and opportunities
.
Blood
.
2023
;
141
(
5
):
467
-
480
.
106.
Roider
T
,
Brinkmann
BJ
,
Kim
V
, et al
.
An autologous culture model of nodal B-cell lymphoma identifies ex vivo determinants of response to bispecific antibodies
.
Blood Adv
.
2021
;
5
(
23
):
5060
-
5071
.
107.
Fattori
S
,
Roux
H
,
Connen
E
, et al
.
Therapeutic targeting of tumor-infiltrating regulatory T cells in breast cancer
.
Cancer Res
.
2022
;
82
(
21
):
3868
-
3879
.
108.
Ennishi
D
,
Takata
K
,
Béguelin
W
, et al
.
Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition
.
Cancer Discov
.
2019
;
9
(
4
):
546
-
563
.
109.
Marcus
R
,
Davies
A
,
Ando
K
, et al
.
Obinutuzumab for the first-line treatment of follicular lymphoma
.
N Engl J Med
.
2017
;
377
(
14
):
1331
-
1344
.
110.
Adolph
LC
,
Fichaux
Q
,
Strobl
CD
, et al
.
CHOP but not bendamustine reverses EZH2 Y641 mutation induced MHC-I/II loss in human lymphoma models [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
2391
.
111.
Aguilar-Hernandez
MM
,
Blunt
MD
,
Dobson
R
, et al
.
IL-4 enhances expression and function of surface IgM in CLL cells
.
Blood
.
2016
;
127
(
24
):
3015
-
3025
.
112.
Hollander
N
,
Haimovich
J
.
Altered N-linked glycosylation in follicular lymphoma and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic targeting
.
Front Immunol
.
2017
;
8
:
912
.
113.
RodrÍguez
E
,
Schetters
STT
,
Van Kooyk
Y
.
The tumour glyco-code as a novel immune checkpoint for immunotherapy
.
Nat Rev Immunol
.
2018
;
18
(
3
):
204
-
211
.
114.
Kremsreiter
SM
,
Kroell
A-SH
,
Weinberger
K
,
Boehm
H
.
Glycan–lectin interactions in cancer and viral infections and how to disrupt them
.
IJMS
.
2021
;
22
(
19
):
10577
.
115.
Bunse
M
,
Pfeilschifter
J
,
Bluhm
J
, et al
.
CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin’s lymphoma and tumor-supportive follicular T helper cells
.
Nat Commun
.
2021
;
12
(
1
):
240
.
116.
Mhaidly
R
,
Mechta-Grigoriou
F
.
Fibroblast heterogeneity in tumor micro-environment: role in immunosuppression and new therapies
.
Semin Immunol
.
2020
;
48
:
101417
.
You do not currently have access to this content.
Sign in via your Institution