• A functional p53 score identifies cells with biallelic TP53 invalidation and predicts survival in myeloma.

  • p53-regulated BAX, but not BAK, expression governs the death response to BH3 mimetics.

Abstract

To establish a strict p53-dependent gene-expression profile, TP53−/− clones were derived from TP53+/+ and TP53−/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53−/− clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation–coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.

1.
Moreau
P
,
Attal
M
,
Hulin
C
, et al
.
Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10192
):
29
-
38
.
2.
Facon
T
,
Kumar
SK
,
Plesner
T
, et al
.
Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial
.
Lancet Oncol
.
2021
;
22
(
11
):
1582
-
1596
.
3.
Manier
S
,
Ingegnere
T
,
Escure
G
, et al
.
Current state and next-generation CAR-T cells in multiple myeloma
.
Blood Rev
.
2022
;
54
:
100929
.
4.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study
.
Lancet
.
2021
;
398
(
10297
):
314
-
324
.
5.
Munshi
NC
,
Anderson
LD
,
Shah
N
, et al
.
Idecabtagene vicleucel in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2021
;
384
(
8
):
705
-
716
.
6.
Thakurta
A
,
Ortiz
M
,
Blecua
P
, et al
.
High subclonal fraction of 17p deletion is associated with poor prognosis in multiple myeloma
.
Blood
.
2019
;
133
(
11
):
1217
-
1221
.
7.
Corre
J
,
Perrot
A
,
Caillot
D
, et al
.
del(17p) without TP53 mutation confers a poor prognosis in intensively treated newly diagnosed patients with multiple myeloma
.
Blood
.
2021
;
137
(
9
):
1192
-
1195
.
8.
Rajkumar
SV
.
Multiple myeloma: 2022 update on diagnosis, risk stratification, and management
.
Am J Hematol
.
2022
;
97
(
8
):
1086
-
1107
.
9.
Lok
A
,
Descamps
G
,
Tessoulin
B
, et al
.
p53 regulates CD46 expression and measles virus infection in myeloma cells
.
Blood Adv
.
2018
;
2
(
23
):
3492
-
3505
.
10.
Botrugno
OA
,
Bianchessi
S
,
Zambroni
D
, et al
.
ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies
.
Haematologica
.
2020
;
105
(
10
):
2440
-
2447
.
11.
Slomp
A
,
Moesbergen
LM
,
Gong
J
, et al
.
Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting
.
Blood Adv
.
2019
;
3
(
24
):
4202
-
4214
.
12.
Gomez-Bougie
P
,
Maiga
S
,
Tessoulin
B
, et al
.
BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment
.
Blood
.
2018
;
132
(
25
):
2656
-
2669
.
13.
Janic
A
,
Valente
LJ
,
Wakefield
MJ
, et al
.
DNA repair processes are critical mediators of p53-dependent tumor suppression
.
Nat Med
.
2018
;
24
(
7
):
947
-
953
.
14.
Manier
S
,
Salem
KZ
,
Park
J
,
Landau
DA
,
Getz
G
,
Ghobrial
IM
.
Genomic complexity of multiple myeloma and its clinical implications
.
Nat Rev Clin Oncol
.
2017
;
14
(
2
):
100
-
113
.
15.
Tessoulin
B
,
Eveillard
M
,
Lok
A
, et al
.
p53 dysregulation in B-cell malignancies: more than a single gene in the pathway to hell
.
Blood Rev
.
2017
;
31
(
4
):
251
-
259
.
16.
Ansari-Pour
N
,
Samur
M
,
Flynt
E
, et al
.
Whole-genome analysis identifies novel drivers and high-risk double-hit events in relapsed/refractory myeloma
.
Blood
.
2023
;
141
(
6
):
620
-
633
.
17.
Loizou
E
,
Banito
A
,
Livshits
G
, et al
.
A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1
.
Cancer Discov
.
2019
;
9
(
7
):
962
-
979
.
18.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al
.
A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science
.
2019
;
365
(
6453
):
599
-
604
.
19.
Benaniba
L
,
Tessoulin
B
,
Trudel
S
, et al
.
The MYRACLE protocol study: a multicentric observational prospective cohort study of patients with multiple myeloma
.
BMC Cancer
.
2019
;
19
(
1
):
855
.
20.
Tessoulin
B
,
Descamps
G
,
Moreau
P
, et al
.
PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance
.
Blood
.
2014
;
124
(
10
):
1626
-
1636
.
21.
Tessoulin
B
,
Moreau-Aubry
A
,
Descamps
G
, et al
.
Whole-exon sequencing of human myeloma cell lines shows mutations related to myeloma patients at relapse with major hits in the DNA regulation and repair pathways
.
J Hematol Oncol
.
2018
;
11
(
1
):
137
.
22.
Moreaux
J
,
Klein
B
,
Bataille
R
, et al
.
A high-risk signature for patients with multiple myeloma established from the molecular classification of human myeloma cell lines
.
Haematologica
.
2011
;
96
(
4
):
574
-
582
.
23.
Maïga
S
,
Brosseau
C
,
Descamps
G
, et al
.
A simple flow cytometry-based barcode for routine authentication of multiple myeloma and mantle cell lymphoma cell lines
.
Cytometry A
.
2015
;
87
(
4
):
285
-
288
.
24.
Lopez
J
,
Bessou
M
,
Riley
JS
, et al
.
Mito-priming as a method to engineer Bcl-2 addiction
.
Nat Commun
.
2016
;
7
(
1
):
10538
.
25.
Surget
S
,
Chiron
D
,
Gomez-Bougie
P
, et al
.
Cell death via DR5, but not DR4, is regulated by p53 in myeloma cells
.
Cancer Res
.
2012
;
72
(
17
):
4562
-
4573
.
26.
Dousset
C
,
Maïga
S
,
Gomez-Bougie
P
, et al
.
BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma
.
Br J Haematol
.
2017
;
179
(
4
):
684
-
688
.
27.
Foroutan
M
,
Bhuva
DD
,
Lyu
R
,
Horan
K
,
Cursons
J
,
Davis
MJ
.
Single sample scoring of molecular phenotypes
.
BMC Bioinformatics
.
2018
;
19
(
1
):
404
.
28.
Andrysik
Z
,
Galbraith
MD
,
Guarnieri
AL
, et al
.
Identification of a core TP53 transcriptional program with highly distributed tumor suppressive activity
.
Genome Res
.
2017
;
27
(
10
):
1645
-
1657
.
29.
Fischer
M
.
Census and evaluation of p53 target genes
.
Oncogene
.
2017
;
36
(
28
):
3943
-
3956
.
30.
Alberge
J-B
,
Kraeber-Bodéré
F
,
Jamet
B
, et al
.
Molecular signature of 18F-FDG PET biomarkers in newly diagnosed multiple myeloma patients: a genome-wide transcriptome analysis from the CASSIOPET study
.
J Nucl Med
.
2022
;
63
(
7
):
1008
-
1013
.
31.
Raad
S
,
Rolain
M
,
Coutant
S
, et al
.
Blood functional assay for rapid clinical interpretation of germline TP53 variants
.
J Med Genet
.
2021
;
58
(
12
):
796
-
805
.
32.
Surget
S
,
Descamps
G
,
Brosseau
C
, et al
.
RITA (reactivating p53 and inducing tumor apoptosis) is efficient against TP53abnormal myeloma cells independently of the p53 pathway
.
BMC Cancer
.
2014
;
14
:
437
.
33.
Surget
S
,
Lemieux-Blanchard
E
,
Maïga
S
, et al
.
Bendamustine and melphalan kill myeloma cells similarly through reactive oxygen species production and activation of the p53 pathway and do not overcome resistance to each other
.
Leuk Lymphoma
.
2014
;
55
(
9
):
2165
-
2173
.
34.
Seiller
C
,
Maiga
S
,
Touzeau
C
, et al
.
Dual targeting of BCL2 and MCL1 rescues myeloma cells resistant to BCL2 and MCL1 inhibitors associated with the formation of BAX/BAK hetero-complexes
.
Cell Death Dis
.
2020
;
11
(
5
):
316
.
35.
Ziccheddu
B
,
Da Vià
MC
,
Lionetti
M
, et al
.
Functional impact of genomic complexity on the transcriptome of multiple myeloma
.
Clin Cancer Res
.
2021
;
27
(
23
):
6479
-
6490
.
36.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood
.
2006
;
108
(
6
):
2020
-
2028
.
37.
Chng
WJ
,
Price-Troska
T
,
Gonzalez-Paz
N
, et al
.
Clinical significance of TP53 mutation in myeloma
.
Leukemia
.
2007
;
21
(
3
):
582
-
584
.
38.
Teoh
PJ
,
Chung
TH
,
Sebastian
S
, et al
.
p53 haploinsufficiency and functional abnormalities in multiple myeloma
.
Leukemia
.
2014
;
28
(
10
):
2066
-
2074
.
39.
De Ramón
C
,
Rojas
EA
,
Cardona-Benavides
IJ
,
Mateos
MV
,
Corchete
LA
,
Gutiérrez
NC
.
Transcriptional signature of TP53 biallelic inactivation identifies a group of multiple myeloma patients without this genetic condition but with dismal outcome
.
Br J Haematol
.
2022
;
199
(
3
):
344
-
354
.
40.
Munawar
U
,
Roth
M
,
Barrio
S
, et al
.
Assessment of TP53 lesions for p53 system functionality and drug resistance in multiple myeloma using an isogenic cell line model
.
Sci Rep
.
2019
;
9
(
1
):
18062
.
41.
Ni Chonghaile
T
,
Sarosiek
KA
,
Vo
T-T
, et al
.
Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy
.
Science
.
2011
;
334
(
6059
):
1129
-
1133
.
42.
Kale
J
,
Osterlund
EJ
,
Andrews
DW
.
BCL-2 family proteins: changing partners in the dance towards death
.
Cell Death Differ
.
2018
;
25
(
1
):
65
-
80
.
43.
Thijssen
R
,
Diepstraten
ST
,
Moujalled
D
, et al
.
Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias
.
Blood
.
2021
;
137
(
20
):
2721
-
2735
.
44.
Liu
T
,
Lam
V
,
Thieme
E
, et al
.
Pharmacologic targeting of Mcl-1 induces mitochondrial dysfunction and apoptosis in B-cell lymphoma cells in a TP53- and BAX- dependent manner
.
Clin Cancer Res
.
2021
;
27
(
17
):
4910
-
4922
.
45.
Carter
BZ
,
Mak
PY
,
Tao
W
, et al
.
Combined inhibition of BCL-2 and MCL-1 overcomes BAX deficiency-mediated resistance of TP53-mutant acute myeloid leukemia to individual BH3 mimetics
.
Blood Cancer J
.
2023
;
13
(
1
):
57
.
46.
Brem
EA
,
O’Brien
S
.
Is a BTKi or BCL2i preferable for first “novel” therapy in CLL? The case for BTKis
.
Blood Adv
.
2022
;
6
(
4
):
1361
-
1364
.
You do not currently have access to this content.
Sign in via your Institution