Abstract
Escape from immune surveillance is a hallmark of cancer. Immune deregulation caused by intrinsic and extrinsic cellular factors, such as altered T-cell functions, leads to immune exhaustion, loss of immune surveillance, and clonal proliferation of tumoral cells. The T-cell immune system contributes to the pathogenesis, maintenance, and progression of myelodysplastic syndrome (MDS). Here, we comprehensively reviewed our current biological knowledge of the T-cell compartment in MDS and recent advances in the development of immunotherapeutic strategies, such as immune checkpoint inhibitors and T-cell– and antibody–based adoptive therapies that hold promise to improve the outcome of patients with MDS.
References
1.
Xia
A
, Zhang
Y
, Xu
J
, Yin
T
, Lu
XJ
. T cell dysfunction in cancer immunity and immunotherapy
. Front Immunol
. 2019
;10
:1719
.2.
Disis
ML
. Immune regulation of cancer
. J Clin Oncol
. 2010
;28
(29
):4531
-4538
.3.
Waldman
AD
, Fritz
JM
, Lenardo
MJ
. A guide to cancer immunotherapy: from T cell basic science to clinical practice
. Nat Rev Immunol
. 2020
;20
(11
):651
-668
.4.
Balandrán
JC
, Lasry
A
, Aifantis
I
. The role of inflammation in the initiation and progression of myeloid neoplasms
. Blood Cancer Discov
. 2023
;4
(4
):254
-266
.5.
Chokr
N
, Patel
R
, Wattamwar
K
, Chokr
S
. The rising era of immune checkpoint inhibitors in myelodysplastic syndromes
. Adv Hematol
. 2018
;2018
:2458679
.6.
Lynch
OF
, Calvi
LM
. Immune dysfunction, cytokine disruption, and stromal changes in myelodysplastic syndrome: a review
. Cells
. 2022
;11
(3
):580
.7.
Simoni
Y
, Chapuis
N
. Diagnosis of myelodysplastic syndromes: from immunological observations to clinical applications
. Diagnostics (Basel)
. 2022
;12
(7
):1659
.8.
Symeonidis
A
, Kourakli
A
, Katevas
P
, et al. Immune function parameters at diagnosis in patients with myelodysplastic syndromes: correlation with the FAB classification and prognosis
. Eur J Haematol
. 1991
;47
(4
):277
-281
.9.
Zou
JX
, Rollison
DE
, Boulware
D
, et al. Altered naive and memory CD4+ T-cell homeostasis and immunosenescence characterize younger patients with myelodysplastic syndrome
. Leukemia
. 2009
;23
(7
):1288
-1296
.10.
Xu
L-P
, Luo
X-H
, Chang
Y-J
, et al. High CD4/CD8 ratio in allografts predicts adverse outcomes in unmanipulated HLA-mismatched/haploidentical hematopoietic stem cell transplantation for chronic myeloid leukemia
. Ann Hematol
. 2009
;88
(10
):1015
-1024
.11.
Tay
RE
, Richardson
EK
, Toh
HC
. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms
. Cancer Gene Ther
. 2021
;28
(1-2
):5
-17
.12.
Jardine
L
, Barge
D
, Ames-Draycott
A
, et al. Rapid detection of dendritic cell and monocyte disorders using CD4 as a lineage marker of the human peripheral blood antigen-presenting cell compartment
. Front Immunol
. 2013
;4
:495
.13.
Zhu
J
, Paul
WE
. CD4 T cells: fates, functions, and faults
. Blood
. 2008
;112
(5
):1557
-1569
.14.
Chatzileontiadou
DSM
, Sloane
H
, Nguyen
AT
, Gras
S
, Grant
EJ
. The many faces of CD4(+) T cells: immunological and structural characteristics
. Int J Mol Sci
. 2020
;22
(1
):73
.15.
Mosmann
TR
, Cherwinski
H
, Bond
MW
, Giedlin
MA
, Coffman
RL
. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins
. J Immunol
. 1986
;136
(7
):2348
-2357
.16.
Tan
Y
, Tan
Y
, Li
J
, et al. Combined IFN-γ and IL-2 release assay for detect active pulmonary tuberculosis: a prospective multicentre diagnostic study in China
. J Transl Med
. 2021
;19
(1
):289
.17.
Li
X
, Körner
H
, Liu
X
. Susceptibility to intracellular infections: contributions of TNF to immune defense
. Front Microbiol
. 2020
;11
:1643
.18.
Wang
X
, Wu
DP
, He
G
, Miao
M
, Sun
A
. Research of subset and function of Th cells in bone marrow of myelodysplastic syndrome patients
. Blood
. 2005
;106
(11
):4913
.19.
Liu
Z
, Xu
X
, Zheng
L
, et al. The value of serum IL-4 to predict the survival of MDS patients
. Eur J Med Res
. 2023
;28
(1
):7
.20.
van Leeuwen-Kerkhoff
N
, Westers
TM
, Poddighe
PJ
, de Gruijl
TD
, Kordasti
S
, van de Loosdrecht
AA
. Thrombomodulin-expressing monocytes are associated with low-risk features in myelodysplastic syndromes and dampen excessive immune activation
. Haematologica
. 2020
;105
(4
):961
-971
.21.
Hamilton
DH
, Bretscher
PA
. Different immune correlates associated with tumor progression and regression: implications for prevention and treatment of cancer
. Cancer Immunol Immunother
. 2008
;57
(8
):1125
-1136
.22.
Hamilton
D
, Ismail
N
, Kroeger
D
, Rudulier
C
, Bretscher
P
. Macroimmunology and immunotherapy of cancer
. Immunotherapy
. 2009
;1
(3
):367
-383
.23.
Romagnani
S
, Maggi
E
, Liotta
F
, Cosmi
L
, Annunziato
F
. Properties and origin of human Th17 cells
. Mol Immunol
. 2009
;47
(1
):3
-7
.24.
Nistala
K
, Wedderburn
LR
. Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis
. Rheumatology (Oxford)
. 2009
;48
(6
):602
-606
.25.
Zhao
J
, Chen
X
, Herjan
T
, Li
X
. The role of interleukin-17 in tumor development and progression
. J Exp Med
. 2020
;217
(1
):e20190297
.26.
Castro
G
, Liu
X
, Ngo
K
, et al. RORγt and RORα signature genes in human Th17 cells
. PLoS One
. 2017
;12
(8
):e0181868
.27.
Zhang
Z
, Li
X
, Guo
J
, et al. Interleukin-17 enhances the production of interferon-γ and tumour necrosis factor-α by bone marrow T lymphocytes from patients with lower risk myelodysplastic syndromes
. Eur J Haematol
. 2013
;90
(5
):375
-384
.28.
Kordasti
SY
, Afzali
B
, Lim
Z
, et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome
. Br J Haematol
. 2009
;145
(1
):64
-72
.29.
Hossein-Khannazer
N
, Zian
Z
, Bakkach
J
, et al. Features and roles of T helper 22 cells in immunological diseases and malignancies
. Scand J Immunol
. 2021
;93
(5
):e13030
.30.
Jiang
S
, Dong
C
. A complex issue on CD4(+) T-cell subsets
. Immunol Rev
. 2013
;252
(1
):5
-11
.31.
Saxton
RA
, Henneberg
LT
, Calafiore
M
, et al. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design
. Immunity
. 2021
;54
(4
):660
-672.e9
.32.
Yamamoto-Furusho
JK
, Miranda-Pérez
E
, Fonseca-Camarillo
G
, Sánchez-Muñoz
F
, Dominguez-Lopez
A
, Barreto-Zuñiga
R
. Colonic epithelial upregulation of interleukin 22 (IL-22) in patients with ulcerative colitis
. Inflamm Bowel Dis
. 2010
;16
(11
):1823
.33.
Shao
LL
, Zhang
L
, Hou
Y
, et al. Th22 cells as well as Th17 cells expand differentially in patients with early-stage and late-stage myelodysplastic syndrome
. PLoS One
. 2012
;7
(12
):e51339
.34.
Jogdand
GM
, Mohanty
S
, Devadas
S
. Regulators of Tfh cell differentiation
. Front Immunol
. 2016
;7
:520
.35.
Qi
H
. T follicular helper cells in space-time
. Nat Rev Immunol
. 2016
;16
(10
):612
-625
.36.
Kazanietz
MG
, Durando
M
, Cooke
M
. CXCL13 and its receptor CXCR5 in cancer: inflammation, immune response, and beyond
. Front Endocrinol (Lausanne)
. 2019
;10
:471
.37.
Lampropoulou
P
, Verigou
E
, Symeonidis
A
, Gogos
C
, Solomou
EE
. Characterization of T follicular helper cells in patients with low risk myelodysplastic syndromes
. Blood
. 2013
;122
(21
):4729
.38.
Lin
YW
, Slape
C
, Zhang
Z
, Aplan
PD
. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia
. Blood
. 2005
;106
(1
):287
-295
.39.
Jiang
H
, Cui
N
, Yang
L
, et al. Altered follicular helper T cell impaired antibody production in a murine model of myelodysplastic syndromes
. Oncotarget
. 2017
;8
(58
):98270
-98279
.40.
Xiao
N
, He
X
, Niu
H
, et al. Increased circulating CD4(+)CXCR5(+) cells and IgG4 levels in patients with myelodysplastic syndrome with autoimmune diseases
. J Immunol Res
. 2021
;2021
:4302515
.41.
Zou
W
. Regulatory T cells, tumour immunity and immunotherapy
. Nat Rev Immunol
. 2006
;6
(4
):295
-307
.42.
Shevyrev
D
, Tereshchenko
V
. Treg heterogeneity, function, and homeostasis
. Front Immunol
. 2019
;10
:3100
.43.
Wang
C
, Yang
Y
, Gao
S
, et al. Immune dysregulation in myelodysplastic syndrome: clinical features, pathogenesis and therapeutic strategies
. Crit Rev Oncol Hematol
. 2018
;122
:123
-132
.44.
Aggarwal
S
, van de Loosdrecht
AA
, Alhan
C
, Ossenkoppele
GJ
, Westers
TM
, Bontkes
HJ
. Role of immune responses in the pathogenesis of low-risk MDS and high-risk MDS: implications for immunotherapy
. Br J Haematol
. 2011
;153
(5
):568
-581
.45.
Nishikawa
H
, Koyama
S
. Mechanisms of regulatory T cell infiltration in tumors: implications for innovative immune precision therapies
. J Immunother Cancer
. 2021
;9
(7
):e002591
.46.
Kordasti
SY
, Ingram
W
, Hayden
J
, et al. CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS)
. Blood
. 2007
;110
(3
):847
-850
.47.
Giovazzino
A
, Leone
S
, Rubino
V
, et al. Reduced regulatory T cells (Treg) in bone marrow preferentially associate with the expansion of cytotoxic T lymphocytes in low risk MDS patients
. Br J Haematol
. 2019
;185
(2
):357
-360
.48.
Kotsianidis
I
, Bouchliou
I
, Nakou
E
, et al. Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS)
. Leukemia
. 2009
;23
(3
):510
-518
.49.
Lambert
C
, Wu
Y
, Aanei
C
. Bone marrow immunity and myelodysplasia
. Front Oncol
. 2016
;6
:172
.50.
Hamdi
W
, Ogawara
H
, Handa
H
, Tsukamoto
N
, Nojima
Y
, Murakami
H
. Clinical significance of regulatory T cells in patients with myelodysplastic syndrome
. Eur J Haematol
. 2009
;82
(3
):201
-207
.51.
Raskov
H
, Orhan
A
, Christensen
JP
, Gögenur
I
. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy
. Br J Cancer
. 2021
;124
(2
):359
-367
.52.
Szabo
PA
, Levitin
HM
, Miron
M
, et al. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease
. Nat Commun
. 2019
;10
(1
):4706
.53.
Philip
M
, Schietinger
A
. CD8+ T cell differentiation and dysfunction in cancer
. Nat Rev Immunol
. 2022
;22
(4
):209
-223
.54.
Geerman
S
, Brasser
G
, Bhushal
S
, et al. Memory CD8(+) T cells support the maintenance of hematopoietic stem cells in the bone marrow
. Haematologica
. 2018
;103
(6
):e230
-e233
.55.
Lopes
MR
, Traina
F
, Campos
PdM
, et al. IL10 inversely correlates with the percentage of CD8⁺ cells in MDS patients
. Leuk Res
. 2013
;37
(5
):541
-546
.56.
Zheng
Z
, Qianqiao
Z
, Qi
H
, Feng
X
, Chunkang
C
, Xiao
L
. In vitro deprivation of CD8+ CD57+ T cells promotes the malignant growth of bone marrow colony cells in patients with lower-risk myelodysplastic syndrome
. Exp Hematol
. 2010
;38
(8
):677
-684
.57.
Yang
H
, Bueso-Ramos
C
, DiNardo
C
, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents
. Leukemia
. 2014
;28
(6
):1280
-1288
.58.
Sand
K
, Theorell
J
, Bruserud
Ø
, Bryceson
YT
, Kittang
AO
. Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes
. Cancer Immunol Immunother
. 2016
;65
(9
):1135
-1147
.59.
Colonna-Romano
G
, Aquino
A
, Bulati
M
, et al. Impairment of gamma/delta T lymphocytes in elderly: implications for immunosenescence
. Exp Gerontol
. 2004
;39
(10
):1439
-1446
.60.
Hayday
AC
. Gammadelta T cells and the lymphoid stress-surveillance response
. Immunity
. 2009
;31
(2
):184
-196
.61.
Kunzmann
V
, Wilhelm
M
. Anti-lymphoma effect of gammadelta T cells
. Leuk Lymphoma
. 2005
;46
(5
):671
-680
.62.
Zhao
Y
, Niu
C
, Cui
J
. Gamma-delta (γδ) T cells: friend or foe in cancer development?
. J Transl Med
. 2018
;16
(1
):3
.63.
Mensurado
S
, Blanco-Domínguez
R
, Silva-Santos
B
. The emerging roles of γδ T cells in cancer immunotherapy
. Nat Rev Clin Oncol
. 2023
;20
(3
):178
-191
.64.
Kiladjian
JJ
, Visentin
G
, Viey
E
, et al. Activation of cytotoxic T-cell receptor γδ T lymphocytes in response to specific stimulation in myelodysplastic syndromes
. Haematologica
. 2008
;93
(3
):381
-389
.65.
Barreyro
L
, Chlon
TM
, Starczynowski
DT
. Chronic immune response dysregulation in MDS pathogenesis
. Blood
. 2018
;132
(15
):1553
-1560
.66.
Sallman
DA
, List
A
. The central role of inflammatory signaling in the pathogenesis of myelodysplastic syndromes
. Blood
. 2019
;133
(10
):1039
-1048
.67.
Ganan-Gomez
I
, Wei
Y
, Starczynowski
DT
, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes
. Leukemia
. 2015
;29
(7
):1458
-1469
.68.
Mayle
A
, Yang
L
, Rodriguez
B
, et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation
. Blood
. 2015
;125
(4
):629
-638
.69.
Li
Z
, Cai
X
, Cai
C-L
, et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
. Blood
. 2011
;118
(17
):4509
-4518
.70.
Pellicci
DG
, Uldrich
AP
, Le Nours
J
, et al. The molecular bases of δ/αβ T cell-mediated antigen recognition
. J Exp Med
. 2014
;211
(13
):2599
-2615
.71.
Naylor
K
, Li
G
, Vallejo
AN
, et al. The influence of age on T cell generation and TCR diversity
. J Immunol
. 2005
;174
(11
):7446
-7452
.72.
Young
NS
, Maciejewski
JP
, Sloand
E
, et al. The relationship of aplastic anemia and PNH
. Int J Hematol
. 2002
;76
(Suppl 2
):168
-172
.73.
Wechsler
J
, Bagot
M
, Nikolova
M
, et al. Killer cell immunoglobulin-like receptor expression delineates in situ Sézary syndrome lymphocytes
. J Pathol
. 2003
;199
(1
):77
-83
.74.
Kuhn
R
, Sandu
I
, Agrafiotis
A
, et al. Clonally expanded virus-specific CD8 T cells acquire diverse transcriptional phenotypes during acute, chronic, and latent infections
. Front Immunol
. 2022
;13
:782441
.75.
Kochenderfer
JN
, Kobayashi
S
, Wieder
ED
, Su
C
, Molldrem
JJ
. Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression
. Blood
. 2002
;100
(10
):3639
-3645
.76.
Epperson
DE
, Nakamura
R
, Saunthararajah
Y
, Melenhorst
J
, Barrett
AJ
. Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process
. Leuk Res
. 2001
;25
(12
):1075
-1083
.77.
Sloand
EM
, Mainwaring
L
, Fuhrer
M
, et al. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome
. Blood
. 2005
;106
(3
):841
-851
.78.
Wlodarski
MW
, Gondek
LP
, Nearman
ZP
, et al. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome
. Blood
. 2006
;108
(8
):2632
-2641
.79.
Fozza
C
, Contini
S
, Galleu
A
, et al. Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4(+) subset and oligoclonal in the CD8(+) subset
. Exp Hematol
. 2009
;37
(8
):947
-955
.80.
Fozza
C
, Corda
G
, Barraqueddu
F
, et al. Azacitidine improves the T-cell repertoire in patients with myelodysplastic syndromes and acute myeloid leukemia with multilineage dysplasia
. Leuk Res
. 2015
;39
(9
):957
-963
.81.
Abbas
HA
, Reville
PK
, Jiang
X
, et al. Response to hypomethylating agents in myelodysplastic syndrome is associated with emergence of novel TCR clonotypes
. Front Immunol
. 2021
;12
:659625
.82.
Hanahan
D
. Hallmarks of cancer: new dimensions
. Cancer Discov
. 2022
;12
(1
):31
-46
.83.
Fane
M
, Weeraratna
AT
. How the ageing microenvironment influences tumour progression
. Nat Rev Cancer
. 2020
;20
(2
):89
-106
.84.
Seidel
JA
, Otsuka
A
, Kabashima
K
. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations
. Front Oncol
. 2018
;8
:86
.85.
Meng
F
, Li
L
, Lu
F
, et al. Overexpression of TIGIT in NK and T cells contributes to tumor immune escape in myelodysplastic syndromes
. Front Oncol
. 2020
;10
:1595
.86.
Haroun
F
, Solola
SA
, Nassereddine
S
, Tabbara
I
. PD-1 signaling and inhibition in AML and MDS
. Ann Hematol
. 2017
;96
(9
):1441
-1448
.87.
Coats
T
, Smith
Ae
, Mourikis
TP
, Irish
JM
, Kordasti
S
, Mufti
GJ
. Mass cytometry reveals PD1 upregulation is an early step in MDS disease progression
. Blood
. 2016
;128
(22
):4296
.88.
Tcvetkov
NY
, Morozova
EV
, Epifanovskaya
OS
, et al. Profile of checkpoint molecules expression on bone marrow cell populations in patients with high-risk myelodysplastic syndrome
. Blood
. 2020
;136
(suppl 1
):43
-44
.89.
Kitagawa
M
, Saito
I
, Kuwata
T
, et al. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes
. Leukemia
. 1997
;11
(12
):2049
-2054
.90.
Stifter
G
, Heiss
S
, Gastl
G
, Tzankov
A
, Stauder
R
. Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis
. Eur J Haematol
. 2005
;75
(6
):485
-491
.91.
Basiorka
AA
, McGraw
KL
, Eksioglu
EA
, et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype
. Blood
. 2016
;128
(25
):2960
-2975
.92.
Thompson
CB
, Allison
JP
. The emerging role of CTLA-4 as an immune attenuator
. Immunity
. 1997
;7
(4
):445
-450
.93.
Aref
S
, El Agdar
M
, El Sebaie
A
, Abouzeid
T
, Sabry
M
, Ibrahim
L
. Prognostic value of CD200 expression and soluble CTLA-4 concentrations in intermediate and high-risk myelodysplastic syndrome patients
. Asian Pac J Cancer Prev
. 2020
;21
(8
):2225
-2230
.94.
Tao
J
, Li
L
, Wang
Y
, Fu
R
, Wang
H
, Shao
Z
. Increased TIM3+CD8+T cells in myelodysplastic syndrome patients displayed less perforin and granzyme B secretion and higher CD95 expression
. Leuk Res
. 2016
;51
:49
-55
.95.
Fu
R
, Li
L
, Hu
J
, et al. Elevated TIM3 expression of T helper cells affects immune system in patients with myelodysplastic syndrome
. J Investig Med
. 2019
;67
(8
):1125
-1130
.96.
Tcvetkov
N
, Gusak
A
, Morozova
E
, et al. Immune checkpoints bone marrow expression as the predictor of clinical outcome in myelodysplastic syndrome
. Leuk Res Rep
. 2020
;14
:100215
.97.
Zeidan
AM
, Giagounidis
A
, Sekeres
MA
, et al. STIMULUS-MDS2 design and rationale: a phase III trial with the anti-TIM-3 sabatolimab (MBG453) + azacitidine in higher risk MDS and CMML-2
. Future Oncol
. 2023
;19
(9
):631
-642
.98.
Garcia-Manero
G
, Chien
KS
, Montalban-Bravo
G
. Myelodysplastic syndromes: 2021 update on diagnosis, risk stratification and management
. Am J Hematol
. 2020
;95
(11
):1399
-1420
.99.
Rodriguez-Sevilla
JJ
, Adema
V
, Garcia-Manero
G
, Colla
S
. Emerging treatments for myelodysplastic syndromes: biological rationales and clinical translation
. Cell Rep Med
. 2023
;4
(2
):100940
.100.
Garcia-Manero
G
, Ribrag
V
, Zhang
Y
, Farooqui
M
, Marinello
P
, Smith
BD
. Pembrolizumab for myelodysplastic syndromes after failure of hypomethylating agents in the phase 1b KEYNOTE-013 study
. Leuk Lymphoma
. 2022
;63
(7
):1660
-1668
.101.
Chien
KS
, Kim
K
, Nogueras-Gonzalez
GM
, et al. Phase II study of azacitidine with pembrolizumab in patients with intermediate-1 or higher-risk myelodysplastic syndrome
. Br J Haematol
. 2021
;195
(3
):378
-387
.102.
Garcia-Manero
G
, Sasaki
K
, Montalban-Bravo
G
, et al. A phase II study of nivolumab or ipilimumab with or without azacitidine for patients with myelodysplastic syndrome (MDS)
. Blood
. 2018
;132
(suppl 1
):465-465
.103.
Morita
K
, Kantarjian
HM
, Montalban Bravo
G
, et al. A phase II study of double immune checkpoint inhibitor blockade with nivolumab and ipilimumab with or without azacitidine in patients with myelodysplastic syndrome (MDS)
. Blood
. 2020
;136
(suppl 1
):7
-9
.104.
Brunner
AM
, Esteve
J
, Porkka
K
, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study
. Blood
. 2021
;138
(suppl 1
):244
.105.
Zeidan
AM
, Ando
K
, Rauzy
O
, et al. Sabatolimab plus hypomethylating agents in previously untreated patients with higher-risk myelodysplastic syndromes (STIMULUS-MDS1): a randomised, double-blind, placebo-controlled, phase 2 trial
. Lancet Haematol
. 2024
;11
(1
):e38
-e50
.106.
Sallman
DA
, Kerre
T
, Havelange
V
, et al. CYAD-01, an autologous NKG2D-based CAR T-cell therapy, in relapsed or refractory acute myeloid leukaemia and myelodysplastic syndromes or multiple myeloma (THINK): haematological cohorts of the dose escalation segment of a phase 1 trial
. Lancet Haematol
. 2023
;10
(3
):e191
-e202
.107.
Sallman
DA
, Elmariah
H
, Sweet
K
, et al. Phase 1/1b safety study of Prgn-3006 Ultracar-T in patients with relapsed or refractory CD33-positive acute myeloid leukemia and higher risk myelodysplastic syndromes
. Blood
. 2022
;140
(suppl 1
):10313
-10315
.108.
Vey
N
, Davidson-Moncada
J
, Uy
GL
, et al. Interim results from a phase 1 first-in-human study of flotetuzumab, a CD123 × CD3 bispecific DART molecule, in AML/MDS
. Ann Oncol
. 2017
;28
(suppl 5
):v355
.109.
Vey
N
, Davidson-Moncada
J
, Uy
GL
, et al. Interim results from a Phase 1 First-in-Human Study of Flotetuzumab, a CD123 × CD3 Bispecific DART® Molecule, in AML/MDS
. ESMO
. 2017
.110.
Uckun
FM
, Watts
J
, Mims
AS
, et al. A clinical phase 1B study of the CD3xCD123 bispecific antibody APVO436 in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome
. Cancers (Basel)
. 2021
;13
(21
):5287
.111.
Nguyen
D
, Ravandi
F
, Wang
SA
, et al. A phase II study of vibecotamab, a CD3-CD123 bispecific T-cell engaging antibody, for MDS or CMML after hypomethylating failure and in MRD-positive AML
. Blood
. 2023
;142
(suppl 1
):322
.112.
Nair-Gupta
P
, Diem
M
, Reeves
D
, et al. A novel C2 domain binding CD33xCD3 bispecific antibody with potent T-cell redirection activity against acute myeloid leukemia
. Blood Adv
. 2020
;4
(5
):906
-919
.113.
Garcia-Manero
G
, Jacoby
M
, Sallman
DA
, Han
T
, Guenot
J
, Feldman
E
. A phase I study of AMV564 in patients with intermediate or high-risk myelodysplastic syndromes
. J Clin Oncol
. 2019
;37
(suppl 15
):TPS7071
.114.
Neelapu
SS
, Locke
FL
, Bartlett
NL
, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
. N Engl J Med
. 2017
;377
(26
):2531
-2544
.115.
Schuster
SJ
, Bishop
MR
, Tam
CS
, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
. N Engl J Med
. 2019
;380
(1
):45
-56
.116.
Abramson
JS
, Palomba
ML
, Gordon
LI
, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
. Lancet
. 2020
;396
(10254
):839
-852
.117.
Chua
CC
, Cheok
KPL
. Taking a step forward in CAR T-cell therapy for acute myeloid leukaemia and myelodysplastic syndrome
. Lancet Haematol
. 2023
;10
(3
):e161
-e162
.118.
Stevens
BM
, Zhang
W
, Pollyea
DA
, et al. CD123 CAR T cells for the treatment of myelodysplastic syndrome
. Exp Hematol
. 2019
;74
:52
-63.e3
.119.
Kenderian
SS
, Ruella
M
, Shestova
O
, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
. Leukemia
. 2015
;29
(8
):1637
-1647
.120.
Liu
H
, Wang
S
, Xin
J
, Wang
J
, Yao
C
, Zhang
Z
. Role of NKG2D and its ligands in cancer immunotherapy
. Am J Cancer Res
. 2019
;9
(10
):2064
-2078
.121.
Diermayr
S
, Himmelreich
H
, Durovic
B
, et al. NKG2D ligand expression in AML increases in response to HDAC inhibitor valproic acid and contributes to allorecognition by NK-cell lines with single KIR-HLA class I specificities
. Blood
. 2008
;111
(3
):1428
-1436
.122.
Driouk
L
, Gicobi
J
, Kamihara
Y
, et al. Chimeric antigen receptor T cells targeting NKG2D-ligands show robust efficacy against acute myeloid leukemia and T-cell acute lymphoblastic leukemia
. Blood
. 2019
;134
(suppl 1
):1930
-1931
.123.
Heine
R
, Thielen
FW
, Koopmanschap
M
, et al. Health economic aspects of chimeric antigen receptor T-cell therapies for hematological cancers: present and future
. Hemasphere
. 2021
;5
(2
):e524
.124.
Depil
S
, Duchateau
P
, Grupp
SA
, Mufti
G
, Poirot
L
. 'Off-the-shelf' allogeneic CAR T cells: development and challenges
. Nat Rev Drug Discov
. 2020
;19
(3
):185
-199
.125.
Buccheri
S
, Guggino
G
, Caccamo
N
, Li Donni
P
, Dieli
F
. Efficacy and safety of γδT cell-based tumor immunotherapy: a meta-analysis
. J Biol Regul Homeost Agents
. 2014
;28
(1
):81
-90
.126.
Haber
L
, Olson
K
, Kelly
MP
, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning
. Sci Rep
. 2021
;11
(1
):14397
.127.
Allen
C
, Zeidan
AM
, Bewersdorf
JP
. BiTEs, DARTS, BiKEs and TriKEs-are antibody based therapies changing the future treatment of AML?
. Life (Basel)
. 2021
;11
(6
):465
.128.
Teramura
M
, Kimura
A
, Iwase
S
, et al. Treatment of severe aplastic anemia with antithymocyte globulin and cyclosporin A with or without G-CSF in adults: a multicenter randomized study in Japan
. Blood
. 2007
;110
(6
):1756
-1761
.129.
Tsuda
K
, Yamanaka
K
, Kitagawa
H
, et al. Calcineurin inhibitors suppress cytokine production from memory T cells and differentiation of naïve T cells into cytokine-producing mature T cells
. PLoS One
. 2012
;7
(2
):e31465
.130.
Mohty
M
. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond
. Leukemia
. 2007
;21
(7
):1387
-1394
.131.
NCCN Guidelines Version Myelodysplastic Syndromes (1.2023).
National Comprehensive Cancer Network
; 2023
.132.
Haider
M
, Al Ali
N
, Padron
E
, et al. Immunosuppressive therapy: exploring an underutilized treatment option for myelodysplastic syndrome
. Clin Lymphoma Myeloma Leuk
. 2016
(16 suppl
):S44
-S48
.133.
Stahl
M
, Bewersdorf
JP
, Giri
S
, Wang
R
, Zeidan
AM
. Use of immunosuppressive therapy for management of myelodysplastic syndromes: a systematic review and meta-analysis
. Haematologica
. 2020
;105
(1
):102
-111
.© 2024 American Society of Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
2024
You do not currently have access to this content.
This feature is available to Subscribers Only
Sign In or Create an Account Close Modal