• SETBP1 mutations, acting as a first-hit/early event, drive an aggressive myelofibrosis-like myeloproliferative disorder.

  • SETBP1 mutations discriminate between 2 subtypes of triple-negative myelofibrosis, with different genetic landscape and aggressiveness.

Abstract

SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.

1.
Piazza
R
,
Valletta
S
,
Winkelmann
N
, et al
.
Recurrent SETBP1 mutations in atypical chronic myeloid leukemia
.
Nat Genet
.
2013
;
45
(
1
):
18
-
24
.
2.
Cristóbal
I
,
Blanco
FJ
,
Garcia-Orti
L
, et al
.
SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia
.
Blood
.
2010
;
115
(
3
):
615
-
625
.
3.
Sakaguchi
H
,
Okuno
Y
,
Muramatsu
H
, et al
.
Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia
.
Nat Genet
.
2013
;
45
(
8
):
937
-
941
.
4.
Makishima
H
,
Yoshida
K
,
Nguyen
N
, et al
.
Somatic SETBP1 mutations in myeloid malignancies
.
Nat Genet
.
2013
;
45
(
8
):
942
-
946
.
5.
Elliott
MA
,
Pardanani
A
,
Hanson
CA
, et al
.
ASXL1 mutations are frequent and prognostically detrimental in CSF3R-mutated chronic neutrophilic leukemia
.
Am J Hematol
.
2015
;
90
(
7
):
653
-
656
.
6.
Damm
F
,
Itzykson
R
,
Kosmider
O
, et al
.
SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias
.
Leukemia
.
2013
;
27
(
6
):
1401
-
1403
.
7.
Fontana
D
,
Ramazzotti
D
,
Aroldi
A
, et al
.
Integrated genomic, functional, and prognostic characterization of atypical chronic myeloid leukemia
.
HemaSphere
.
2020
;
4
(
6
):
e497
.
8.
Makishima
H
.
Somatic SETBP1 mutations in myeloid neoplasms
.
Int J Hematol
.
2017
;
105
(
6
):
732
-
742
.
9.
Piazza
R
,
Magistroni
V
,
Redaelli
S
, et al
.
SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub
.
Nat Commun
.
2018
;
9
(
1
):
2192
.
10.
Nguyen
N
,
Gudmundsson
KO
,
Soltis
AR
, et al
.
Recruitment of MLL1 complex is essential for SETBP1 to induce myeloid transformation
.
iScience
.
2022
;
25
(
1
):
103679
.
11.
Oakley
K
,
Han
Y
,
Vishwakarma
BA
, et al
.
Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10
.
Blood
.
2012
;
119
(
25
):
6099
-
6108
.
12.
Carratt
SA
,
Kong
GL
,
Curtiss
BM
, et al
.
Mutated SETBP1 activates transcription of Myc programs to accelerate CSF3R-driven myeloproliferative neoplasms
.
Blood
.
2022
;
140
(
6
):
644
-
658
.
13.
Vishwakarma
BA
,
Nguyen
N
,
Makishima
H
, et al
.
Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development
.
Leukemia
.
2016
;
30
(
1
):
200
-
208
.
14.
Neo
WH
,
Booth
CAG
,
Azzoni
E
, et al
.
Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells
.
Blood
.
2018
;
131
(
20
):
2223
-
2234
.
15.
Siegemund
S
,
Shepherd
J
,
Xiao
C
,
Sauer
K
.
hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells
.
PLoS One
.
2015
;
10
(
4
):
e0124661
.
16.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
17.
Gianelli
U
,
Vener
C
,
Bossi
A
, et al
.
The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis
.
Mod Pathol
.
2012
;
25
(
9
):
1193
-
1202
.
18.
Olender
L
,
Thapa
R
,
Gazit
R
.
Isolation of murine myeloid progenitor populations by CD34/CD150 surface markers
.
Cells
.
2022
;
11
(
3
):
350
.
19.
Akashi
K
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
.
A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
.
Nature
.
2000
;
404
(
6774
):
193
-
197
.
20.
Aurrand-Lions
M
,
Mancini
SJC
.
Murine bone marrow niches from hematopoietic stem cells to B cells
.
Int J Mol Sci
.
2018
;
19
(
8
):
2353
.
21.
Goyama
S
,
Yamamoto
G
,
Shimabe
M
, et al
.
Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells
.
Cell Stem Cell
.
2008
;
3
(
2
):
207
-
220
.
22.
Alliston
T
,
Ko
TC
,
Cao
Y
, et al
.
Repression of bone morphogenetic protein and activin-inducible transcription by Evi-1
.
J Biol Chem
.
2005
;
280
(
25
):
24227
-
24237
.
23.
Wang
X
,
Dong
F
,
Zhang
S
, et al
.
TGF-β1 negatively regulates the number and function of hematopoietic stem cells
.
Stem Cell Rep
.
2018
;
11
(
1
):
274
-
287
.
24.
Sayadi
A
,
Jeyakani
J
,
Seet
SH
, et al
.
Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity
.
Oncogene
.
2016
;
35
(
18
):
2311
-
2321
.
25.
Iwama
A
.
Polycomb repressive complexes in hematological malignancies
.
Blood
.
2017
;
130
(
1
):
23
-
29
.
26.
Dorsam
ST
,
Ferrell
CM
,
Dorsam
GP
, et al
.
The transcriptome of the leukemogenic homeoprotein HOXA9 in human hematopoietic cells
.
Blood
.
2004
;
103
(
5
):
1676
-
1684
.
27.
Biever
A
,
Valjent
E
,
Puighermanal
E
.
Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function
.
Front Mol Neurosci
.
2015
;
8
:
75
.
28.
Farrell
AS
,
Sears
RC
.
MYC degradation
.
Cold Spring Harb Perspect Med
.
2014
;
4
(
3
):
a014365
.
29.
Banfi
F
,
Rubio
A
,
Zaghi
M
, et al
.
SETBP1 accumulation induces P53 inhibition and genotoxic stress in neural progenitors underlying neurodegeneration in Schinzel-Giedion syndrome
.
Nat Commun
.
2021
;
12
(
1
):
4050
.
30.
Kong
X
,
Ma
L
,
Chen
E
,
Shaw
CA
,
Edelstein
LC
.
Identification of the regulatory elements and target genes of megakaryopoietic transcription factor MEF2C
.
Thromb Haemost
.
2019
;
119
(
5
):
716
-
725
.
31.
Norfo
R
,
Zini
R
,
Pennucci
V
, et al
.
miRNA-mRNA integrative analysis in primary myelofibrosis CD34+ cells: role of miR-155/JARID2 axis in abnormal megakaryopoiesis
.
Blood
.
2014
;
124
(
13
):
e21
-
e32
.
32.
Zhang
W
,
Ping
J
,
Zhou
Y
,
Chen
G
,
Xu
L
.
Salvianolic acid B inhibits activation of human primary hepatic stellate cells through downregulation of the myocyte enhancer factor 2 signaling pathway
.
Front Pharmacol
.
2019
;
10
:
322
.
33.
Zaghi
M
,
Banfi
F
,
Massimino
L
, et al
.
Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition
.
Nat Commun
.
2023
;
14
(
1
):
3212
.
34.
Tefferi
A
,
Nicolosi
M
,
Mudireddy
M
, et al
.
Driver mutations and prognosis in primary myelofibrosis: Mayo-Careggi MPN Alliance Study of 1,095 patients
.
Am J Hematol
.
2018
;
93
(
3
):
348
-
355
.
35.
Acuna-Hidalgo
R
,
Deriziotis
P
,
Steehouwer
M
, et al
.
Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies
.
PLoS Genet
.
2017
;
13
(
3
):
e1006683
.
36.
Ortmann
CA
,
Kent
DG
,
Nangalia
J
, et al
.
Effect of mutation order on myeloproliferative neoplasms
.
N Engl J Med
.
2015
;
372
(
7
):
601
-
612
.
37.
Nangalia
J
,
Nice
FL
,
Wedge
DC
, et al
.
DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype
.
Haematologica
.
2015
;
100
(
11
):
e438
-
e442
.
38.
Stieglitz
E
,
Troup
CB
,
Gelston
LC
, et al
.
Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia
.
Blood
.
2015
;
125
(
3
):
516
-
524
.
39.
Gotlib
J
,
Maxson
JE
,
George
TI
,
Tyner
JW
.
The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment
.
Blood
.
2013
;
122
(
10
):
1707
-
1711
.
40.
Laborde
RR
,
Patnaik
MM
,
Lasho
TL
, et al
.
SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML
.
Leukemia
.
2013
;
27
(
10
):
2100
-
2102
.
You do not currently have access to this content.
Sign in via your Institution