• Mezigdomide potently degrades IKAROS, conferring broader activity in KMT2A-r and NPM1c AML models compared with lenalidomide and iberdomide.

  • Mezigdomide synergizes with menin inhibition and prevents and overcomes MEN1 mutations in patient derived xenografts.

Abstract

Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)–rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.

1.
Bolouri
H
,
Farrar
JE
,
Triche
T
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
2.
Grimwade
D
,
Hills
RK
,
Moorman
AV
, et al
.
Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials
.
Blood
.
2010
;
116
(
3
):
354
-
365
.
3.
Schoch
C
,
Schnittger
S
,
Klaus
M
,
Kern
W
,
Hiddemann
W
,
Haferlach
T
.
AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases
.
Blood
.
2003
;
102
(
7
):
2395
-
2402
.
4.
Krauter
J
,
Wagner
K
,
Schäfer
I
, et al
.
Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup
.
J Clin Oncol
.
2009
;
27
(
18
):
3000
-
3006
.
5.
Armstrong
SA
,
Staunton
JE
,
Silverman
LB
, et al
.
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
.
Nat Genet
.
2002
;
30
(
1
):
41
-
47
.
6.
Krivtsov
AV
,
Armstrong
SA
.
MLL translocations, histone modifications and leukaemia stem-cell development
.
Nat Rev Cancer
.
2007
;
7
(
11
):
823
-
833
.
7.
Yokoyama
A
,
Somervaille
TC
,
Smith
KS
,
Rozenblatt-Rosen
O
,
Meyerson
M
,
Cleary
ML
.
The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis
.
Cell
.
2005
;
123
(
2
):
207
-
218
.
8.
Yokoyama
A
,
Cleary
ML
.
Menin critically links MLL proteins with LEDGF on cancer-associated target genes
.
Cancer Cell
.
2008
;
14
(
1
):
36
-
46
.
9.
Grembecka
J
,
He
S
,
Shi
A
, et al
.
Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia
.
Nat Chem Biol
.
2012
;
8
(
3
):
277
-
284
.
10.
Falini
B
,
Mecucci
C
,
Tiacci
E
, et al
.
Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype
.
N Engl J Med
.
2005
;
352
(
3
):
254
-
266
.
11.
Kühn
MWM
,
Song
E
,
Feng
Z
, et al
.
Targeting chromatin regulators inhibits leukemogenic gene expression in NPM1 mutant leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1166
-
1181
. 7.
12.
Mullighan
CG
,
Kennedy
A
,
Zhou
X
, et al
.
Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias
.
Leukemia
.
2007
;
21
(
9
):
2000
-
2009
.
13.
Krivtsov
AV
,
Evans
K
,
Gadrey
JY
, et al
.
A menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia
.
Cancer Cell
.
2019
;
36
(
6
):
660
-
673.e11
.
14.
Klossowski
S
,
Miao
H
,
Kempinska
K
, et al
.
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
.
J Clin Invest
.
2020
;
130
(
2
):
981
-
997
.
15.
Uckelmann
HJ
,
Kim
SM
,
Wong
EM
, et al
.
Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia
.
Science
.
2020
;
367
(
6477
):
586
-
590
.
16.
Issa
GC
,
Aldoss
I
,
DiPersio
J
, et al
.
The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia
.
Nature
.
2023
;
615
(
7954
):
920
-
924
.
17.
Perner
F
,
Stein
EM
,
Wenge
DV
, et al
.
MEN1 mutations mediate clinical resistance to menin inhibition
.
Nature
.
2023
;
615
(
7954
):
913
-
919
.
18.
Aubrey
BJ
,
Cutler
JA
,
Bourgeois
W
, et al
.
IKAROS and MENIN coordinate therapeutically actionable leukemogenic gene expression in MLL-r acute myeloid leukemia
.
Nat Cancer
.
2022
;
3
(
5
):
595
-
613
.
19.
Krönke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
20.
Lu
G
,
Middleton
RE
,
Sun
H
, et al
.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
.
Science
.
2014
;
343
(
6168
):
305
-
309
.
21.
Jan
M
,
Sperling
AS
,
Ebert
BL
.
Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide
.
Nat Rev Clin Oncol
.
2021
;
18
(
7
):
401
-
417
.
22.
Hansen
JD
,
Correa
M
,
Nagy
MA
, et al
.
Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma
.
J Med Chem
.
2020
;
63
(
13
):
6648
-
6676
.
23.
Richardson
PG
,
Trudel
S
,
Popat
R
, et al
.
Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma
.
N Engl J Med
.
2023
;
389
(
11
):
1009
-
1022
.
24.
Townsend
EC
,
Murakami
MA
,
Christodoulou
A
, et al
.
The public repository of xenografts enables discovery and randomized phase II-like trials in mice
.
Cancer Cell
.
2016
;
29
(
4
):
574
-
586
.
25.
Ianevski
A
,
Giri
AK
,
Aittokallio
T
.
SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples
.
Nucleic Acids Res
.
2022
;
50
(
W1
):
W739
-
W743
.
26.
Krönke
J
,
Fink
EC
,
Hollenbach
PW
, et al
.
Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS
.
Nature
.
2015
;
523
(
7559
):
183
-
188
.
27.
Merrill
JT
,
Werth
VP
,
Furie
R
, et al
.
Phase 2 trial of iberdomide in systemic lupus erythematosus
.
N Engl J Med
.
2022
;
386
(
11
):
1034
-
1045
.
28.
van de Donk
NW
,
Popat
R
,
Larsen
J
, et al
.
First results of iberdomide (IBER; CC-220) in combination with dexamethasone (DEX) and daratumumab (DARA) or bortezomib (BORT) in patients with relapsed/refractory multiple myeloma (RRMM)
.
Blood
.
2020
;
136
(
suppl 1
):
16
-
17
.
29.
Lonial
S
,
van de Donk
NW
,
Popat
R
, et al
.
First clinical (phase 1b/2a) study of iberdomide (CC-220; IBER), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM)
.
J Clin Oncol
.
2019
;
37
:
8006
. 8006.
30.
Olsen
SN
,
Godfrey
L
,
Healy
JP
, et al
.
MLL::AF9 degradation induces rapid changes in transcriptional elongation and subsequent loss of an active chromatin landscape
.
Mol Cell
.
2022
;
82
(
6
):
1140
-
1155.e11
.
31.
Faber
J
,
Krivtsov
AV
,
Stubbs
MC
, et al
.
HOXA9 is required for survival in human MLL-rearranged acute leukemias
.
Blood
.
2009
;
113
(
11
):
2375
-
2385
.
32.
Nowak
RP
,
Yue
H
,
Park
EY
,
Fischer
ES
.
Methods for quantitative assessment of protein degradation
.
Methods Mol Biol
.
2021
;
2365
:
247
-
263
.
33.
Sievers
QL
,
Petzold
G
,
Bunker
RD
, et al
.
Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN
.
Science
.
2018
;
362
(
6414
):
eaat0572
.
34.
Fink
EC
,
McConkey
M
,
Adams
DN
, et al
.
CrbnI391V is sufficient to confer in vivo sensitivity to thalidomide and its derivatives in mice
.
Blood
.
2018
;
132
(
14
):
1535
-
1544
.
35.
Sellar
RS
,
Sperling
AS
,
Słabicki
M
, et al
.
Degradation of GSPT1 causes TP53-independent cell death in leukemia while sparing normal hematopoietic stem cells
.
J Clin Invest
.
2022
;
132
(
16
):
e153514
.
36.
Wong
L
,
Jimenez Nunez
MD
,
Bahlis
NJ
, et al
.
Pharmacodynamic (PD) responses drive dose/schedule selection of CC-92480, a novel CELMoD agent, in a phase 1 dose-escalation study in relapsed/refractory multiple myeloma (RRMM)
.
J Clin Oncol
.
2020
;
38
:
8531
. 8531.
37.
Fehniger
TA
,
Uy
GL
,
Trinkaus
K
, et al
.
A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia
.
Blood
.
2011
;
117
(
6
):
1828
-
1833
.
38.
A study of revumenib in combination with chemotherapy for patients diagnosed with relapsed or refractory leukemia. ClinicalTrials.gov identifier: NCT05761171
. Updated 5 December 2023. Accessed 1 November 2023. https://clinicaltrials.gov/study/NCT05761171.
39.
First in human study of ziftomenib in relapsed or refractory acute myeloid leukemia. ClinicalTrials.gov identifier: NCT04067336
. Updated 31 October 2023. Accessed 1 November 2023. https://www.clinicaltrials.gov/study/NCT04067336.
40.
A study to evaluate mezigdomide in combination with carfilzomib and dexamethasone (MeziKD) versus carfilzomib and dexamethasone (Kd) in participants with relapsed or refractory multiple myeloma (SUCCESSOR-2) (SUCCESSOR-2). ClinicalTrials.gov identifier: NCT05552976
. Updated 7 December 2023. Accessed 1 November 2023. https://www.clinicaltrials.gov/study/NCT05552976.
You do not currently have access to this content.
Sign in via your Institution