• CSPs increase thrombin generation in recipients but fail to show integrin activation.

  • Procoagulant function of CSPs can be predicted by lyso-platelet activating factor species, even before storage.

Abstract

Platelets are stored at room temperature for 5 to 7 days (room temperature–stored platelets [RSPs]). Because of frequent and severe shortages, the US Food and Drug Administration recently approved up to 14-day cold-stored platelets (CSPs) in plasma. However, the posttransfusion function of CSPs is unknown and it is unclear which donors are best suited to provide either RSPs or CSPs. In this study, we sought to evaluate the posttransfusion platelet function and its predictors for platelets stored for the maximum approved storage times (7-day RSPs and 14-day CSPs) in healthy volunteers on acetylsalicylic acid (ASA). We conducted a randomized crossover study in 10 healthy humans. Individuals donated 1 platelet unit, stored at either 22°C or 4°C based on randomization. Before transfusion, participants ingested ASA to inhibit endogenous platelets. Transfusion recipients were tested for platelet function and lipid mediators. Platelet units were tested for lipid mediators only. A second round of transfusion with the alternative product was followed by an identical testing sequence. RSPs reversed platelet inhibition significantly better in αIIbβ3 integrin activation–dependent assays. In contrast, CSPs in recipients led to significantly more thrombin generation, which was independent of platelet microparticles. Lysophosphatidylcholine-O species levels predicted the procoagulant capacity of CSPs. In contrast, polyunsaturated fatty acid concentrations predicted the aggregation response of RSPs. In summary, we provide, to our knowledge, the first efficacy data of extended-stored CSPs in plasma. Our results suggest that identifying ideal RSP and CSP donors is possible, and pave the way for larger studies in the future. This trial is registered at www.ClinicalTrials.gov as #NCT0511102.

1.
Curley
A
,
Stanworth
SJ
,
Willoughby
K
, et al
.
Randomized trial of platelet-transfusion thresholds in neonates
.
N Engl J Med
.
2019
;
380
(
3
):
242
-
251
.
2.
Baharoglu
MI
,
Cordonnier
C
,
Al-Shahi Salman
R
, et al
.
Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial
.
Lancet
.
2016
;
387
(
10038
):
2605
-
2613
.
3.
Cap
AP
.
Platelet storage: a license to chill!
.
Transfusion
.
2016
;
56
(
1
):
13
-
16
.
4.
Kogler
VJ
,
Stolla
M
.
There and back again: the once and current developments in donor-derived platelet products for hemostatic therapy
.
Blood
.
2022
;
139
(
26
):
3688
-
3698
.
5.
Reddoch-Cardenas
KM
,
Peltier
GC
,
Chance
TC
, et al
.
Cold storage of platelets in platelet additive solution maintains mitochondrial integrity by limiting initiation of apoptosis-mediated pathways
.
Transfusion
.
2021
;
61
(
1
):
178
-
190
.
6.
Reddoch-Cardenas
KM
,
Montgomery
RK
,
Lafleur
CB
,
Peltier
GC
,
Bynum
JA
,
Cap
AP
.
Cold storage of platelets in platelet additive solution: an in vitro comparison of two Food and Drug Administration–approved collection and storage systems
.
Transfusion
.
2018
;
58
(
7
):
1682
-
1688
.
7.
Reddoch
KM
,
Pidcoke
HF
,
Montgomery
RK
, et al
.
Hemostatic function of apheresis platelets stored at 4°C and 22°C
.
Shock
.
2014
;
41 Suppl 1
(
0 1
):
54
-
61
.
8.
Nair
PM
,
Pandya
SG
,
Dallo
SF
, et al
.
Platelets stored at 4°C contribute to superior clot properties compared to current standard-of-care through fibrin-crosslinking
.
Br J Haematol
.
2017
;
178
(
1
):
119
-
129
.
9.
Marini
I
,
Aurich
K
,
Jouni
R
, et al
.
Cold storage of platelets in additive solution: the impact of residual plasma in apheresis platelet concentrates
.
Haematologica
.
2019
;
104
(
1
):
207
-
214
.
10.
Kobsar
A
,
Pfeifroth
A
,
Klingler
P
, et al
.
Composition of plasma in apheresis-derived platelet concentrates under cold storage
.
Blood Transfus
.
2023;21(4):327-336
.
11.
Miles
J
,
Bailey
SL
,
Obenaus
AM
, et al
.
Storage temperature determines platelet GPVI levels and function in mice and humans
.
Blood Adv
.
2021
;
5
(
19
):
3839
-
3849
.
12.
Guidance on Alternative Procedures for the Manufacture of Cold-Stored Platelets Intended for the Treatment of Active Bleeding when Conventional Platelets Are Not Available or Their Use Is Not Practical
.
US Food and Drug Administration
;
2023
.
13.
Strandenes
G
,
Sivertsen
J
,
Bjerkvig
CK
, et al
.
A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery
.
Anesthesiology
.
2020
;
133
(
6
):
1173
-
1183
.
14.
Klompas
AM
,
Zec
S
,
Hanson
AC
, et al
.
Postoperative transfusions after administration of delayed cold-stored platelets versus room temperature platelets in cardiac surgery: a retrospective cohort study
.
Anesthesiology
.
2023
;
139
(
2
):
153
-
163
.
15.
Stolla
M
,
Fitzpatrick
L
,
Gettinger
I
, et al
.
In vivo viability of extended 4°C-stored autologous apheresis platelets
.
Transfusion
.
2018
;
58
(
10
):
2407
-
2413
.
16.
Stolla
M
,
Bailey
SL
,
Fang
L
, et al
.
Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C–stored platelets
.
Transfusion
.
2020
;
60
(
3
):
613
-
621
.
17.
Slichter
SJ
,
Harker
LA
.
Preparation and storage of platelet concentrates: I. Factors influencing the harvest of viable platelets from whole blood
.
Br J Haematol
.
1976
;
34
(
3
):
395
-
402
.
18.
Becker
GA
,
Tuccelli
M
,
Kunicki
T
,
Chalos
MK
,
Aster
RH
.
Studies of platelet concentrates stored at 22 C and 4 C
.
Transfusion
.
1973
;
13
(
2
):
61
-
68
.
19.
Filip
DJ
,
Aster
RH
.
Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C
.
J Lab Clin Med
.
1978
;
91
(
4
):
618
-
624
.
20.
Valeri
CR
.
Circulation and hemostatic effectiveness of platelets stored at 4 C or 22 C: studies in aspirin-treated normal volunteers
.
Transfusion
.
1976
;
16
(
1
):
20
-
23
.
21.
Lu
W
,
Yazer
M
,
Li
N
, et al
.
Hospital red blood cell and platelet supply and utilization from March to December of the first year of the COVID-19 pandemic: the BEST collaborative study
.
Transfusion
.
2022
;
62
(
8
):
1559
-
1570
.
22.
Braathen
H
,
Hagen
KG
,
Kristoffersen
EK
,
Strandenes
G
,
Apelseth
TO
.
Implementation of a dual platelet inventory in a tertiary hospital during the COVID-19 pandemic enabling cold-stored apheresis platelets for treatment of actively bleeding patients
.
Transfusion
.
2022
;
62
(
suppl 1
):
S193
-
S202
. S202.
23.
Smethurst
PA
,
McAndrew
M
,
Proffitt
S
, et al
.
Evaluating apheresis platelets at reduced dose as a contingency measure for extreme shortages
.
Transfusion
.
2022
;
62
(
1
):
173
-
182
.
24.
O’Donnell
VB
,
Murphy
RC
,
Watson
SP
.
Platelet lipidomics
.
Circ Res
.
2014
;
114
(
7
):
1185
-
1203
.
25.
Vardon Bounes
F
,
Mujalli
A
,
Cenac
C
, et al
.
The importance of blood platelet lipid signaling in thrombosis and in sepsis
.
Adv Biol Regul
.
2018
;
67
:
66
-
73
.
26.
Larsen
HJ
,
Byrne
D
,
Özpolat
T
, et al
.
Loss of 12-lipoxygenase improves the post-transfusion function of stored platelets
.
Arterioscler Thromb Vasc Biol
.
2023
;
43
(
10
):
1990
-
2007
.
27.
Duchez
A-C
,
Fauteux-Daniel
S
,
Sut
C
, et al
.
Bioactive lipids as biomarkers of adverse reactions associated with apheresis platelet concentrate transfusion
.
Front Immunol
.
2023
;
14
:
1031968
.
28.
Green
SM
,
Padula
MP
,
Marks
DC
,
Johnson
L
.
The lipid composition of platelets and the impact of storage: an overview
.
Transfus Med Rev
.
2020
;
34
(
2
):
108
-
116
.
29.
Stanger
L
,
Yamaguchi
A
,
Yalavarthi
P
, et al
.
The oxylipin analogue CS585 prevents platelet activation and thrombosis through activation of the prostacyclin receptor
.
Blood
.
2023
;
142
(
18
):
1556
-
1569
.
30.
Yeung
J
,
Adili
R
,
Yamaguchi
A
, et al
.
Omega-6 DPA and its 12-lipoxygenase–oxidized lipids regulate platelet reactivity in a nongenomic PPARα-dependent manner
.
Blood Adv
.
2020
;
4
(
18
):
4522
-
4537
.
31.
Welch
EJ
,
Naikawadi
RP
,
Li
Z
, et al
.
Opposing effects of platelet-activating factor and lyso-platelet-activating factor on neutrophil and platelet activation
.
Mol Pharmacol
.
2009
;
75
(
1
):
227
-
234
.
32.
Zimring
JC
,
Slichter
S
,
Odem-Davis
K
, et al
.
Metabolites in stored platelets associated with platelet recoveries and survivals
.
Transfusion
.
2016
;
56
(
8
):
1974
-
1983
.
33.
Rank
A
,
Nieuwland
R
,
Crispin
A
, et al
.
Clearance of platelet microparticles in vivo
.
Platelets
.
2011
;
22
(
2
):
111
-
116
.
34.
Medved
J
,
Knott
BM
,
Tarrah
SN
, et al
.
The lysophospholipid-binding molecule CD1D is not required for the alloimmunization response to fresh or stored RBCs in mice despite RBC storage driving alterations in lysophospholipids
.
Transfusion
.
2021
;
61
(
7
):
2169
-
2178
.
35.
Fu
X
,
Felcyn
JR
,
Odem-Davis
K
,
Zimring
JC
.
Bioactive lipids accumulate in stored red blood cells despite leukoreduction: a targeted metabolomics study
.
Transfusion
.
2016
;
56
(
10
):
2560
-
2570
.
36.
Fu
X
,
Anderson
M
,
Wang
Y
,
Zimring
JC
.
High-throughput metabolomics, methods and protocols
.
Methods Mol Biol
.
2019
;
1978
:
107
-
120
.
37.
Xia
J
,
Wishart
DS
.
Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
.
Nat Protoc
.
2011
;
6
(
6
):
743
-
760
.
38.
Getz
TM
,
Montgomery
RK
,
Bynum
JA
,
Aden
JK
,
Pidcoke
HF
,
Cap
AP
.
Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses
.
Transfusion
.
2016
;
56
(
6
):
1320
-
1328
.
39.
Johnson
L
,
Roan
C
,
Lei
P
,
Spinella
PC
,
Marks
DC
.
The role of sodium citrate during extended cold storage of platelets in platelet additive solutions
.
Transfusion
.
2023
;
63
(
suppl 3
):
S126
-
S137
.
40.
Reddoch-Cardenas
KM
,
Sharma
U
,
Salgado
CL
, et al
.
An in vitro pilot study of apheresis platelets collected on Trima Accel system and stored in T-PAS+ solution at refrigeration temperature (1-6°C)
.
Transfusion
.
2019
;
59
(
5
):
1789
-
1798
.
41.
Choi
PA
,
Parry
PV
,
Bauer
JS
, et al
.
Use of aspirin and P2Y12 response assays in detecting reversal of platelet inhibition with platelet transfusion in patients with traumatic brain injury on antiplatelet therapy
.
Neurosurgery
.
2017
;
80
(
1
):
98
-
104
.
42.
Montgomery
RK
,
Reddoch
KM
,
Evani
SJ
,
Cap
AP
,
Ramasubramanian
AK
.
Enhanced shear-induced platelet aggregation due to low-temperature storage
.
Transfusion
.
2013
;
53
(
7
):
1520
-
1530
.
43.
Yang
J
,
Yin
W
,
Zhang
Y
, et al
.
Evaluation of the advantages of platelet concentrates stored at 4°C versus 22°C
.
Transfusion
.
2018
;
58
(
3
):
736
-
747
.
44.
Pidcoke
HF
,
Spinella
PC
,
Ramasubramanian
AK
, et al
.
Refrigerated platelets for the treatment of acute bleeding: a review of the literature and reexamination of current standards
.
Shock
.
2014
;
41
(
suppl 1
):
51
-
53
.
45.
Hoffmeister
KM
,
Falet
H
,
Toker
A
,
Barkalow
KL
,
Stossel
TP
,
Hartwig
JH
.
Mechanisms of cold-induced platelet actin assembly
.
J Biol Chem
.
2001
;
276
(
27
):
24751
-
24759
.
46.
Kelly
K
,
Cancelas
JA
,
Szczepiorkowski
ZM
,
Dumont
DF
,
Rugg
N
,
Dumont
LJ
.
Frozen platelets – development and future directions
.
Transfus Med Rev
.
2020
;
34
(
4
):
286
-
293
.
47.
Cancelas
JA
.
Future of platelet formulations with improved clotting profile: a short review on human safety and efficacy data
.
Transfusion
.
2019
;
59
(
S2
):
1467
-
1473
.
48.
Bode
AP
,
Knupp
CL
.
Effect of cold storage on platelet glycoprotein Ib and vesiculation
.
Transfusion
.
1994
;
34
(
8
):
690
-
696
.
49.
Nash
J
,
Davies
A
,
Saunders
CV
,
George
CE
,
Williams
JO
,
James
PE
.
Quantitative increases of extracellular vesicles in prolonged cold storage of platelets increases the potential to enhance fibrin clot formation
.
Transfus Med
.
2023
;
33
(
6
):
467
-
477
.
50.
Johnson
L
,
Coorey
CP
,
Marks
DC
.
The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserine-expressing platelets and platelet microparticles
.
Transfusion
.
2014
;
54
(
8
):
1917
-
1926
.
51.
Adili
R
,
Voigt
EM
,
Bormann
JL
, et al
.
In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid-mediated inhibition of both platelet function and accumulation in arterial thrombi
.
Platelets
.
2019
;
30
(
2
):
271
-
279
.
52.
Thorngren
M
,
Gustafson
A
.
Effects of 11-week increase in dietary eicosapentaenoic acid on bleeding time, lipids, and platelet aggregation
.
Lancet
.
1981
;
318
(
8257
):
1190
-
1193
.
53.
Vognild
E
,
Elvevoll
EO
,
Brox
J
, et al
.
Effects of dietary marine oils and olive oil on fatty acid composition, platelet membrane fluidity, platelet responses, and serum lipids in healthy humans
.
Lipids
.
1998
;
33
(
4
):
427
-
436
.
54.
D’Alessandro
A
,
Thomas
KA
,
Stefanoni
D
, et al
.
Metabolic phenotypes of standard and cold-stored platelets
.
Transfusion
.
2020
;
60
(
suppl 3
):
S96
-
S106
.
You do not currently have access to this content.
Sign in via your Institution