• GM-CSF strongly activates STAT5, ERK, and Akt-mTOR in myeloid-committed progenitors to produce trained macrophages.

  • GM-CSF induces NF-κB translocation to the nucleus in noncommitted LKS+ progenitors to produce tolerized macrophages.

Abstract

Inflammatory responses must be tightly coordinated with the activation of emergency myelopoiesis to produce potent myeloid cells that fight infection without causing excessive host damage. Here, we show that granulocyte-macrophage colony-stimulating factor (GM-CSF) programs myeloid-committed progenitors to produce trained macrophages (increased cytokine response), but programs the upstream noncommitted LKS+ progenitors (defined as Lin c-Kit+ Sca-1+ cells) to produce tolerized macrophages (decreased cytokine response). In myeloid progenitors, GM-CSF strongly activates signal transducer and activator of transcription 5 (STAT5), Ras-Raf-extracellular signal regulated kinase (ERK), and Akt-mTOR signaling pathways, which are essential to establish a training program, whereas in LKS+ progenitors, GM-CSF induces NF-κB translocation to the nucleus to establish a tolerization program. These differences arise from higher GM-CSF receptor expression in myeloid progenitors compared with LKS+ cells. We demonstrate that β-catenin regulation of NF-κB nuclear translocation is central in this process. In myeloid progenitors, glycogen synthase kinase 3 (GSK3) inactivation by strong ERK and phosphatidylinositol 3 kinase (PI3K)-Akt signaling increases cytoplasmic β-catenin levels to block NF-κB nuclear translocation. In contrast, when ERK and PI3K-Akt signaling are weak, active GSK3 causes a decrease in β-catenin, allowing NF-κB nuclear translocation in LKS+ progenitors. Finally, GM-CSF-induced LKS+ tolerization takes place in several murine models of trained immunity and in human CD34+ CD38 progenitors. Our study reveals that in addition to activating myelopoiesis, GM-CSF also programs early and immediate myeloid progenitors to produce opposing immune memory phenotypes. We propose that the inflammatory response from immediate myeloid progenitors may be balanced by the tolerized phenotype of early progenitors, thus providing a mechanism for appropriate resolution of inflammation and protection against a prolonged cytokine storm.

1.
Hérault
A
,
Binnewies
M
,
Leong
S
, et al
.
Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis
.
Nature
.
2017
;
544
(
7648
):
53
-
58
.
2.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
3.
Becher
B
,
Tugues
S
,
Greter
M
.
GM-CSF: from growth factor to central mediator of tissue inflammation
.
Immunity
.
2016
;
45
(
5
):
963
-
973
.
4.
Perugini
M
,
Brown
AL
,
Salerno
DG
, et al
.
Alternative modes of GM-CSF receptor activation revealed using activated mutants of the common beta-subunit
.
Blood
.
2010
;
115
(
16
):
3346
-
3353
.
5.
Chavakis
T
,
Mitroulis
I
,
Hajishengallis
G
.
Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation
.
Nat Immunol
.
2019
;
20
(
7
):
802
-
811
.
6.
Borriello
F
,
Iannone
R
,
Di Somma
S
, et al
.
GM-CSF and IL-3 modulate human monocyte TNF-α production and renewal in in vitro models of trained immunity
.
Front Immunol
.
2017
;
7
:
680
.
7.
Lazarus
HM
,
Ragsdale
CE
,
Gale
RP
,
Lyman
GH
.
Sargramostim (rhu GM-CSF) as cancer therapy (systematic review) and an immunomodulator. a drug before its time?
.
Front Immunol
.
2021
;
12
:
706186
.
8.
Al
B
,
Suen
TK
,
Placek
K
,
Netea
MG
.
Innate (learned) memory
.
J Allergy Clin Immunol
.
2023
;
152
(
3
):
551
-
566
.
9.
Mitroulis
I
,
Ruppova
K
,
Wang
B
, et al
.
Modulation of myelopoiesis progenitors is an integral component of trained immunity
.
Cell
.
2018
;
172
(
1-2
):
147
-
161.e12
.
10.
Bono
C
,
Guerrero
P
,
Jordán-Pla
A
, et al
.
GM-CSF programs hematopoietic stem and progenitor cells during Candida albicans vaccination for protection against reinfection
.
Front Immunol
.
2021
;
12
:
790309
.
11.
Mattia
E
,
Carruba
G
,
Angiolella
L
,
Cassone
A
.
Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response
.
J Bacteriol
.
1982
;
152
(
2
):
555
-
562
.
12.
Cheng
QJ
,
Ohta
S
,
Sheu
KM
, et al
.
NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages
.
Science
.
2021
;
372
(
6548
):
1349
-
1353
.
13.
Cheng
SC
,
Quintin
J
,
Cramer
RA
, et al
.
mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity
.
Science
.
2014
;
345
(
6204
):
1250684
.
14.
Park
SH
,
Park-Min
KH
,
Chen
J
,
Hu
X
,
Ivashkiv
LB
.
Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages
.
Nat Immunol
.
2011
;
12
(
7
):
607
-
615
.
15.
Deng
J
,
Miller
SA
,
Wang
HY
, et al
.
beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer
.
Cancer Cell
.
2002
;
2
(
4
):
323
-
334
.
16.
Gopal
A
,
Chidambaram
IS
,
Devaraj
N
,
Devaraj
H
.
Shigella dysenteriae infection activates proinflammatory response through β-catenin/NF-κB signaling pathway
.
PLoS One
.
2017
;
12
(
4
):
e0174943
.
17.
Brown
AL
,
Salerno
DG
,
Sadras
T
, et al
.
The GM-CSF receptor utilizes β-catenin and Tcf4 to specify macrophage lineage differentiation
.
Differentiation
.
2012
;
83
(
1
):
47
-
59
.
18.
Liu
C
,
Li
Y
,
Semenov
M
, et al
.
Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism
.
Cell
.
2002
;
108
(
6
):
837
-
847
.
19.
Holmes
T
,
O'Brien
TA
,
Knight
R
, et al
.
Glycogen synthase kinase-3beta inhibition preserves hematopoietic stem cell activity and inhibits leukemic cell growth
.
Stem Cell
.
2008
;
26
(
5
):
1288
-
1297
.
20.
Yamashita
M
,
Passegué
E
.
TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration
. 09.
Cell Stem Cell
.
2019
;
25
(
3
):
357
-
372.e7
.
21.
Kawamura
S
,
Onai
N
,
Miya
F
, et al
.
Identification of a human clonogenic progenitor with strict monocyte differentiation potential: a counterpart of mouse cMoPs
.
Immunity
.
2017
;
46
(
5
):
835
-
848.e4
.
22.
Dobrovolskaia
MA
,
Medvedev
AE
,
Thomas
KE
, et al
.
Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR "homotolerance" versus "heterotolerance" on NF-kappa B signaling pathway components
.
J Immunol
.
2003
;
170
(
1
):
508
-
519
.
23.
Yáñez
A
,
Hassanzadeh-Kiabi
N
,
Ng
MY
, et al
.
Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce
.
Eur J Immunol
.
2013
;
43
(
8
):
2114
-
2125
.
24.
Cross
DA
,
Alessi
DR
,
Cohen
P
,
Andjelkovich
M
,
Hemmings
BA
.
Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B
.
Nature
.
1995
;
378
(
6559
):
785
-
789
.
25.
Ding
Q
,
Xia
W
,
Liu
JC
, et al
.
Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin
.
Mol Cell
.
2005
;
19
(
2
):
159
-
170
.
26.
Ma
B
,
Fey
M
,
Hottiger
MO
.
WNT/β-catenin signaling inhibits CBP-mediated RelA acetylation and expression of proinflammatory NF-κB target genes
.
J Cell Sci
.
2015
;
128
(
14
):
2430
-
2436
.
27.
Bacher
S
,
Meier-Soelch
J
,
Kracht
M
,
Schmitz
ML
.
Regulation of transcription factor NF-κB in its natural habitat: the nucleus
.
Cells
.
2021
;
10
(
4
):
753
.
28.
Zhang
Q
,
Cao
X
.
Epigenetic remodeling in innate immunity and inflammation
.
Annu Rev Immunol
.
2021
;
39
:
279
-
311
.
29.
Caldwell
BA
,
Wu
Y
,
Wang
J
,
Li
L
.
Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis
.
Cell Rep
.
2024
;
43
(
3
):
113894
.
30.
Kawahara
TL
,
Michishita
E
,
Adler
AS
, et al
.
SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span
.
Cell
.
2009
;
136
(
1
):
62
-
74
.
31.
Yáñez
A
,
Coetzee
SG
,
Olsson
A
, et al
.
Granulocyte-monocyte progenitors and monocyte-dendritic cell progenitors independently produce functionally distinct monocytes
.
Immunity
.
2017
;
47
(
5
):
890
-
902.e4
.
32.
Rhee
C
,
Scadden
EW
,
Wong
LP
, et al
.
Limited plasticity of monocyte fate and function associated with epigenetic scripting at the level of progenitors
.
Blood
.
2023
;
142
(
7
):
658
-
674
.
You do not currently have access to this content.
Sign in via your Institution