• Hepatocyte-specific Notch1 deficiency impairs hepatic TPO production and reduces circulating platelet number.

  • Delta-like 4 on desialylated platelets activates hepatocyte Notch1 signaling and upregulates HES5, leading to JAK2/STAT3 phosphorylation.

Abstract

Notch signaling regulates cell-fate decisions in several developmental processes and cell functions. However, the role of Notch in hepatic thrombopoietin (TPO) production remains unclear. We noted thrombocytopenia in mice with hepatic Notch1 deficiency and so investigated TPO production and other features of platelets in these mice. We found that the liver ultrastructure and hepatocyte function were comparable between control and Notch1-deficient mice. However, the Notch1-deficient mice had significantly lower plasma TPO and hepatic TPO messenger RNA levels, concomitant with lower numbers of platelets and impaired megakaryocyte differentiation and maturation, which were rescued by addition of exogenous TPO. Additionally, JAK2/STAT3 phosphorylation was significantly inhibited in Notch1-deficient hepatocytes, consistent with the RNA-sequencing analysis. JAK2/STAT3 phosphorylation and TPO production was also impaired in cultured Notch1-deficient hepatocytes after treatment with desialylated platelets. Consistently, hepatocyte-specific Notch1 deletion inhibited JAK2/STAT3 phosphorylation and hepatic TPO production induced by administration of desialylated platelets in vivo. Interestingly, Notch1 deficiency downregulated the expression of HES5 but not HES1. Moreover, desialylated platelets promoted the binding of HES5 to JAK2/STAT3, leading to JAK2/STAT3 phosphorylation and pathway activation in hepatocytes. Hepatocyte Ashwell-Morell receptor (AMR), a heterodimer of asialoglycoprotein receptor 1 [ASGR1] and ASGR2, physically associates with Notch1, and inhibition of AMR impaired Notch1 signaling activation and hepatic TPO production. Furthermore, blockage of Delta-like 4 on desialylated platelets inhibited hepatocyte Notch1 activation and HES5 expression, JAK2/STAT3 phosphorylation, and subsequent TPO production. In conclusion, our study identifies a novel regulatory role of Notch1 in hepatic TPO production, indicating that it might be a target for modulating TPO level.

1.
Kaushansky
K
.
Thrombopoiesis
.
Semin Hematol
.
2015
;
52
(
1
):
4
-
11
.
2.
Lok
S
,
Kaushansky
K
,
Holly
RD
, et al
.
Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo
.
Nature
.
1994
;
369
(
6481
):
565
-
568
.
3.
Qian
S
,
Fu
F
,
Li
W
,
Chen
Q
,
de Sauvage
FJ
.
Primary role of the liver in thrombopoietin production shown by tissue-specific knockout
.
Blood
.
1998
;
92
(
6
):
2189
-
2191
.
4.
Stoffel
R
,
Wiestner
A
,
Skoda
RC
.
Thrombopoietin in thrombocytopenic mice: evidence against regulation at the mRNA level and for a direct regulatory role of platelets
.
Blood
.
1996
;
87
(
2
):
567
-
573
.
5.
Fielder
PJ
,
Gurney
AL
,
Stefanich
E
, et al
.
Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets
.
Blood
.
1996
;
87
(
6
):
2154
-
2161
.
6.
Grozovsky
R
,
Begonja
AJ
,
Liu
K
, et al
.
The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling
.
Nat Med
.
2015
;
21
(
1
):
47
-
54
.
7.
Xu
M
,
Li
J
,
Neves
MAD
, et al
.
GPIbα is required for platelet-mediated hepatic thrombopoietin generation
.
Blood
.
2018
;
132
(
6
):
622
-
634
.
8.
Bray
SJ
.
Notch signalling: a simple pathway becomes complex
.
Nat Rev Mol Cell Biol
.
2006
;
7
(
9
):
678
-
689
.
9.
Hori
K
,
Sen
A
,
Artavanis-Tsakonas
S
.
Notch signaling at a glance
.
J Cell Sci
.
2013
;
126
(
Pt 10
):
2135
-
2140
.
10.
Kopan
R
,
Ilagan
MX
.
The canonical Notch signaling pathway: unfolding the activation mechanism
.
Cell
.
2009
;
137
(
2
):
216
-
233
.
11.
Borggrefe
T
,
Liefke
R
.
Fine-tuning of the intracellular canonical Notch signaling pathway
.
Cell Cycle
.
2012
;
11
(
2
):
264
-
276
.
12.
Mercher
T
,
Cornejo
MG
,
Sears
C
, et al
.
Notch signaling specifies megakaryocyte development from hematopoietic stem cells
.
Cell Stem Cell
.
2008
;
3
(
3
):
314
-
326
.
13.
Poirault-Chassac
S
,
Six
E
,
Catelain
C
, et al
.
Notch/Delta4 signaling inhibits human megakaryocytic terminal differentiation
.
Blood
.
2010
;
116
(
25
):
5670
-
5678
.
14.
Ding
Y
,
Gui
X
,
Chu
X
, et al
.
MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis
.
Nat Commun
.
2023
;
14
(
1
):
4829
.
15.
Geisler
F
,
Nagl
F
,
Mazur
PK
, et al
.
Liver-specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice
.
Hepatology
.
2008
;
48
(
2
):
607
-
616
.
16.
Zapotoczny
B
,
Szafranska
K
,
Owczarczyk
K
,
Kus
E
,
Chlopicki
S
,
Szymonski
M
.
Atomic force microscopy reveals the dynamic morphology of fenestrations in live liver sinusoidal endothelial cells
.
Sci Rep
.
2017
;
7
(
1
):
7994
.
17.
Schmitt
A
,
Guichard
J
,
Masse
JM
,
Debili
N
,
Cramer
EM
.
Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets
.
Exp Hematol
.
2001
;
29
(
11
):
1295
-
1302
.
18.
Warren
A
,
Le Couteur
DG
,
Fraser
R
,
Bowen
DG
,
McCaughan
GW
,
Bertolino
P
.
T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells
.
Hepatology
.
2006
;
44
(
5
):
1182
-
1190
.
19.
Jiang
YZ
,
Tang
YQ
,
Hoover
C
, et al
.
Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice
.
Cell Death Differ
.
2021
;
28
(
11
):
3009
-
3021
.
20.
Deppermann
C
,
Kratofil
RM
,
Peiseler
M
, et al
.
Macrophage galactose lectin is critical for Kupffer cells to clear aged platelets
.
J Exp Med
.
2020
;
217
(
4
):
e20190723
.
21.
Li
Y
,
Fu
J
,
Ling
Y
, et al
.
Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells
.
Proc Natl Acad Sci U S A
.
2017
;
114
(
31
):
8360
-
8365
.
22.
Guidotti
LG
,
Inverso
D
,
Sironi
L
, et al
.
Immunosurveillance of the liver by intravascular effector CD8(+) T cells
.
Cell
.
2015
;
161
(
3
):
486
-
500
.
23.
Kamakura
S
,
Oishi
K
,
Yoshimatsu
T
,
Nakafuku
M
,
Masuyama
N
,
Gotoh
Y
.
Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling
.
Nat Cell Biol
.
2004
;
6
(
6
):
547
-
554
.
24.
Tabula Muris Consortium, Overall coordination, Logistical coordination
, et al
.
Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
.
Nature
.
2018
;
562
(
7727
):
367
-
372
.
25.
Karakas
D
,
Li
J
,
Ni
H
.
Novel mechanisms of thrombopoietin generation: the essential role of Kupffer cells [abstract]
.
Blood
.
2021
;
138
(
suppl 1
):
3139
.
26.
Kalafut
J
,
Czapinski
J
,
Przybyszewska-Podstawka
A
, et al
.
Optogenetic control of NOTCH1 signaling
.
Cell Commun Signal
.
2022
;
20
(
1
):
67
.
27.
Chaurasia
SN
,
Ekhlak
M
,
Kushwaha
G
,
Singh
V
,
Mallick
RL
,
Dash
D
.
Notch signaling functions in noncanonical juxtacrine manner in platelets to amplify thrombogenicity
.
Elife
.
2022
;
11
:
e79590
.
28.
Suresh
S
,
Irvine
AE
.
The NOTCH signaling pathway in normal and malignant blood cell production
.
J Cell Commun Signal
.
2015
;
9
(
1
):
5
-
13
.
29.
McCright
B
,
Lozier
J
,
Gridley
T
.
A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency
.
Development
.
2002
;
129
(
4
):
1075
-
1082
.
30.
Rongvaux
A
,
Willinger
T
,
Takizawa
H
, et al
.
Human thrombopoietin knockin mice efficiently support human hematopoiesis in vivo
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
6
):
2378
-
2383
.
31.
Brandstadter
JD
,
Maillard
I
.
Notch signaling in T cell homeostasis and differentiation
.
Open Biol
.
2019
;
9
(
11
):
190187
.
32.
Bugeon
L
,
Taylor
HB
,
Progatzky
F
, et al
.
The NOTCH pathway contributes to cell fate decision in myelopoiesis
.
Haematologica
.
2011
;
96
(
12
):
1753
-
1760
.
33.
Mengie Ayele
T
,
Tilahun Muche
Z
,
Behaile Teklemariam
A
,
Bogale Kassie
A
,
Chekol Abebe
E
.
Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: a systemic review
.
J Inflamm Res
.
2022
;
15
:
1349
-
1364
.
34.
Laouar
Y
,
Welte
T
,
Fu
XY
,
Flavell
RA
.
STAT3 is required for Flt3L-dependent dendritic cell differentiation
.
Immunity
.
2003
;
19
(
6
):
903
-
912
.
35.
Fasouli
ES
,
Katsantoni
E
.
JAK-STAT in early hematopoiesis and leukemia
.
Front Cell Dev Biol
.
2021
;
9
:
669363
.
36.
Kirito
K
,
Osawa
M
,
Morita
H
, et al
.
A functional role of Stat3 in in vivo megakaryopoiesis
.
Blood
.
2002
;
99
(
9
):
3220
-
3227
.
37.
Brooks
AJ
,
Putoczki
T
.
JAK-STAT signaling pathway in cancer
.
Cancers (Basel)
.
2020
;
12
(
7
):
1971
.
38.
Vainchenker
W
,
Constantinescu
SN
.
JAK/STAT signaling in hematological malignancies
.
Oncogene
.
2013
;
32
(
21
):
2601
-
2613
.
39.
James
C
,
Ugo
V
,
Le Couedic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signaling causes polycythemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
40.
Zhou
B
,
Lin
W
,
Long
Y
, et al
.
Notch signaling pathway: architecture, disease, and therapeutics
.
Signal Transduct Target Ther
.
2022
;
7
(
1
):
95
.
41.
Grewal
PK
.
The Ashwell Morell receptor
.
Methods Enzymol
.
2010
;
479
:
223
-
241
.
42.
Ellies
LG
,
Ditto
D
,
Levy
GG
, et al
.
Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands
.
Proc Natl Acad Sci U S A
.
2002
;
99
(
15
):
10042
-
10047
.
43.
Grewal
PK
,
Uchiyama
S
,
Ditto
D
, et al
.
The Ashwell receptor mitigates the lethal coagulopathy of sepsis
.
Nat Med
.
2008
;
14
(
6
):
648
-
655
.
44.
Rumjantseva
V
,
Grewal
PK
,
Wandall
HH
, et al
.
Dual roles for hepatic lectin receptors in the clearance of chilled platelets
.
Nat Med
.
2009
;
15
(
11
):
1273
-
1280
.
You do not currently have access to this content.
Sign in via your Institution