• Two leukemic evolutionary patterns, “clonal shift” and “clonal drift” are unveiled in relapsed T-ALL via single-cell multiomics profiling.

  • High RNA-binding protein MSI2 level accounts for persistent clones at relapse through the posttranscriptional regulation of MYC in T-ALL.

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5′ single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis–relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, “clonal shift” and “clonal drift” were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.

1.
Karrman
K
,
Johansson
B
.
Pediatric T-cell acute lymphoblastic leukemia
.
Genes Chromosomes Cancer
.
2017
;
56
(
2
):
89
-
116
.
2.
Raetz
EA
,
Teachey
DT
.
T-cell acute lymphoblastic leukemia
.
Hematology Am Soc Hematol Educ Program
.
2016
;
2016
(
1
):
580
-
588
.
3.
Lauten
M
,
Moricke
A
,
Beier
R
, et al
.
Prediction of outcome by early bone marrow response in childhood acute lymphoblastic leukemia treated in the ALL-BFM 95 trial: differential effects in precursor B-cell and T-cell leukemia
.
Haematologica
.
2012
;
97
(
7
):
1048
-
1056
.
4.
Girardi
T
,
Vicente
C
,
Cools
J
,
De Keersmaecker
K
.
The genetics and molecular biology of T-ALL
.
Blood
.
2017
;
129
(
9
):
1113
-
1123
.
5.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1211
-
1218
.
6.
Gianni
F
,
Belver
L
,
Ferrando
A
.
The genetics and mechanisms of T-cell acute lymphoblastic leukemia
.
Cold Spring Harb Perspect Med
.
2020
;
10
(
3
):
a035246
.
7.
Teachey
DT
,
Pui
CH
.
Comparative features and outcomes between paediatric T-cell and B-cell acute lymphoblastic leukaemia
.
Lancet Oncol
.
2019
;
20
(
3
):
e142
-
e154
.
8.
Tzoneva
G
,
Perez-Garcia
A
,
Carpenter
Z
, et al
.
Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL
.
Nat Med
.
2013
;
19
(
3
):
368
-
371
.
9.
Sanchez-Martin
M
,
Ferrando
A
.
The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia
.
Blood
.
2017
;
129
(
9
):
1124
-
1133
.
10.
Zhang
J
,
Zhang
Y
,
Zhang
M
, et al
.
FLT3 pathway is a potential therapeutic target for PRC2-mutated T-cell acute lymphoblastic leukemia
.
Blood
.
2018
;
132
(
23
):
2520
-
2524
.
11.
Zhu
H
,
Zhang
L
,
Wu
Y
, et al
.
T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1
.
Elife
.
2018
;
7
:
e38314
.
12.
Broux
M
,
Prieto
C
,
Demeyer
S
, et al
.
Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia
.
Blood
.
2019
;
134
(
16
):
1323
-
1336
.
13.
Jiang
J
,
Wang
J
,
Yue
M
, et al
.
Direct phosphorylation and stabilization of MYC by Aurora B kinase promote T-cell leukemogenesis
.
Cancer Cell
.
2020
;
37
(
2
):
200
-
215.e5
.
14.
Gocho
Y
,
Liu
J
,
Hu
J
, et al
.
Network-based systems pharmacology reveals heterogeneity in LCK and BCL2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia
.
Nat Cancer
.
2021
;
2
(
3
):
284
-
299
.
15.
Hu
J
,
Wang
T
,
Xu
J
, et al
.
WEE1 inhibition induces glutamine addiction in T-cell acute lymphoblastic leukemia
.
Haematologica
.
2021
;
106
(
7
):
1816
-
1827
.
16.
Pepper
JW
,
Scott Findlay
C
,
Kassen
R
,
Spencer
SL
,
Maley
CC
.
Cancer research meets evolutionary biology
.
Evol Appl
.
2009
;
2
(
1
):
62
-
70
.
17.
Greaves
M
,
Maley
CC
.
Clonal evolution in cancer
.
Nature
.
2012
;
481
(
7381
):
306
-
313
.
18.
Merlo
LM
,
Pepper
JW
,
Reid
BJ
,
Maley
CC
.
Cancer as an evolutionary and ecological process
.
Nat Rev Cancer
.
2006
;
6
(
12
):
924
-
935
.
19.
Ding
L
,
Ley
TJ
,
Larson
DE
, et al
.
Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing
.
Nature
.
2012
;
481
(
7382
):
506
-
510
.
20.
Miles
LA
,
Bowman
RL
,
Merlinsky
TR
, et al
.
Single-cell mutation analysis of clonal evolution in myeloid malignancies
.
Nature
.
2020
;
587
(
7834
):
477
-
482
.
21.
Morita
K
,
Wang
F
,
Jahn
K
, et al
.
Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics
.
Nat Commun
.
2020
;
11
(
1
):
5327
.
22.
Alberti-Servera
L
,
Demeyer
S
,
Govaerts
I
, et al
.
Single-cell DNA amplicon sequencing reveals clonal heterogeneity and evolution in T-cell acute lymphoblastic leukemia
.
Blood
.
2021
;
137
(
6
):
801
-
811
.
23.
Meyers
S
,
Alberti-Servera
L
,
Gielen
O
, et al
.
Monitoring of leukemia clones in B-cell acute lymphoblastic leukemia at diagnosis and during treatment by single-cell DNA amplicon sequencing
.
Hemasphere
.
2022
;
6
(
4
):
e700
.
24.
Guess
T
,
Potts
CR
,
Bhat
P
, et al
.
Distinct patterns of clonal evolution drive myelodysplastic syndrome progression to secondary acute myeloid leukemia
.
Blood Cancer Discov
.
2022
;
3
(
4
):
316
-
329
.
25.
Duchmann
M
,
Joudinaud
R
,
Boudry
A
, et al
.
Hematopoietic differentiation at single-cell resolution in NPM1-mutated AML
.
Blood Cancer J
.
2022
;
12
(
9
):
136
.
26.
Ren
X
,
Kang
B
,
Zhang
Z
.
Understanding tumor ecosystems by single-cell sequencing: promises and limitations
.
Genome Biol
.
2018
;
19
(
1
):
211
.
27.
Guo
X
,
Zhang
Y
,
Zheng
L
, et al
.
Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing
.
Nat Med
.
2018
;
24
(
7
):
978
-
985
.
28.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
29.
van Galen
P
,
Hovestadt
V
,
Wadsworth Ii
MH
, et al
.
Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity
.
Cell
.
2019
;
176
(
6
):
1265
-
1281.e24
.
30.
Witkowski
MT
,
Dolgalev
I
,
Evensen
NA
, et al
.
Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia
.
Cancer Cell
.
2020
;
37
(
6
):
867
-
882.e12
.
31.
Tang
J
,
Yu
J
,
Cai
J
, et al
.
Prognostic factors for CNS control in children with acute lymphoblastic leukemia treated without cranial irradiation
.
Blood
.
2021
;
138
(
4
):
331
-
343
.
32.
Kudinov
AE
,
Karanicolas
J
,
Golemis
EA
,
Boumber
Y
.
Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets
.
Clin Cancer Res
.
2017
;
23
(
9
):
2143
-
2153
.
33.
Yang
W
,
Cai
J
,
Shen
S
, et al
.
Pulse therapy with vincristine and dexamethasone for childhood acute lymphoblastic leukaemia (CCCG-ALL-2015): an open-label, multicentre, randomised, phase 3, non-inferiority trial
.
Lancet Oncol
.
2021
;
22
(
9
):
1322
-
1332
.
34.
Pui
CH
,
Pei
D
,
Raimondi
SC
, et al
.
Clinical impact of minimal residual disease in children with different subtypes of acute lymphoblastic leukemia treated with response-adapted therapy
.
Leukemia
.
2017
;
31
(
2
):
333
-
339
.
35.
Vosberg
S
,
Greif
PA
.
Clonal evolution of acute myeloid leukemia from diagnosis to relapse
.
Genes Chromosomes Cancer
.
2019
;
58
(
12
):
839
-
849
.
36.
Craig
AJ
,
von Felden
J
,
Garcia-Lezana
T
,
Sarcognato
S
,
Villanueva
A
.
Tumour evolution in hepatocellular carcinoma
.
Nat Rev Gastroenterol Hepatol
.
2020
;
17
(
3
):
139
-
152
.
37.
Vagia
E
,
Mahalingam
D
,
Cristofanilli
M
.
The landscape of targeted therapies in TNBC
.
Cancers (Basel)
.
2020
;
12
(
4
):
916
.
38.
De Smedt
R
,
Morscio
J
,
Goossens
S
,
Van Vlierberghe
P
.
Targeting steroid resistance in T-cell acute lymphoblastic leukemia
.
Blood Rev
.
2019
;
38
:
100591
.
39.
Jerchel
IS
,
Hoogkamer
AQ
,
Aries
IM
, et al
.
RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia
.
Leukemia
.
2018
;
32
(
4
):
931
-
940
.
40.
Follini
E
,
Marchesini
M
,
Roti
G
.
Strategies to overcome resistance mechanisms in T-cell acute lymphoblastic leukemia
.
Int J Mol Sci
.
2019
;
20
(
12
):
3021
.
41.
Turati
VA
,
Guerra-Assuncao
JA
,
Potter
NE
, et al
.
Chemotherapy induces canalization of cell state in childhood B-cell precursor acute lymphoblastic leukemia
.
Nat Cancer
.
2021
;
2
(
8
):
835
-
852
.
42.
Minuesa
G
,
Albanese
SK
,
Xie
W
, et al
.
Small-molecule targeting of MUSASHI RNA-binding activity in acute myeloid leukemia
.
Nat Commun
.
2019
;
10
(
1
):
2691
.
43.
Schuschel
K
,
Helwig
M
,
Huttelmaier
S
,
Heckl
D
,
Klusmann
JH
,
Hoell
JI
.
RNA-binding proteins in acute leukemias
.
Int J Mol Sci
.
2020
;
21
(
10
):
3409
.
44.
Thol
F
,
Winschel
C
,
Sonntag
AK
, et al
.
Prognostic significance of expression levels of stem cell regulators MSI2 and NUMB in acute myeloid leukemia
.
Ann Hematol
.
2013
;
92
(
3
):
315
-
323
.
45.
Aly
RM
,
Ghazy
HF
.
Prognostic significance of MSI2 predicts unfavorable outcome in adult B-acute lymphoblastic leukemia
.
Int J Lab Hematol
.
2015
;
37
(
2
):
272
-
278
.
46.
Zhao
HZ
,
Jia
M
,
Luo
ZB
, et al
.
Prognostic significance of the Musashi-2 (MSI2) gene in childhood acute lymphoblastic leukemia
.
Neoplasma
.
2016
;
63
(
1
):
150
-
157
.
47.
Park
SM
,
Gonen
M
,
Vu
L
, et al
.
Musashi2 sustains the mixed-lineage leukemia-driven stem cell regulatory program
.
J Clin Invest
.
2015
;
125
(
3
):
1286
-
1298
.
48.
Nguyen
DTT
,
Lu
Y
,
Chu
KL
, et al
.
HyperTRIBE uncovers increased MUSASHI-2 RNA binding activity and differential regulation in leukemic stem cells
.
Nat Commun
.
2020
;
11
(
1
):
2026
.
49.
Duggimpudi
S
,
Kloetgen
A
,
Maney
SK
, et al
.
Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2's RNA-binding activity on IL-6 signaling
.
J Biol Chem
.
2018
;
293
(
40
):
15359
-
15369
.
You do not currently have access to this content.
Sign in via your Institution