• Senescent RBCs are bound to platelets, forming P-RBC complexes that are selectively consumed by erythrophagocytes.

  • A sufficient supply of platelets is required to maintain efficient complex-dependent clearance of senescent RBCs.

Abstract

In humans, ∼0.1% to 0.3% of circulating red blood cells (RBCs) are present as platelet-RBC (P-RBC) complexes, and it is 1% to 2% in mice. Excessive P-RBC complexes are found in diseases that compromise RBC health (eg, sickle cell disease and malaria) and contribute to pathogenesis. However, the physiological role of P-RBC complexes in healthy blood is unknown. As a result of damage accumulated over their lifetime, RBCs nearing senescence exhibit physiological and molecular changes akin to those in platelet-binding RBCs in sickle cell disease and malaria. Therefore, we hypothesized that RBCs nearing senescence are targets for platelet binding and P-RBC formation. Confirming this hypothesis, pulse-chase labeling studies in mice revealed an approximately tenfold increase in P-RBC complexes in the most chronologically aged RBC population compared with younger cells. When reintroduced into mice, these complexes were selectively cleared from the bloodstream (in preference to platelet-free RBC) through the reticuloendothelial system and erythrophagocytes in the spleen. As a corollary, patients without a spleen had higher levels of complexes in their bloodstream. When the platelet supply was artificially reduced in mice, fewer RBC complexes were formed, fewer erythrophagocytes were generated, and more senescent RBCs remained in circulation. Similar imbalances in complex levels and senescent RBC burden were observed in humans with immune thrombocytopenia (ITP). These findings indicate that platelets are important for binding and clearing senescent RBCs, and disruptions in platelet count or complex formation and clearance may negatively affect RBC homeostasis and may contribute to the known risk of thrombosis in ITP and after splenectomy.

1.
Barr
JD
,
Chauhan
AK
,
Schaeffer
GV
,
Hansen
JK
,
Motto
DG
.
Red blood cells mediate the onset of thrombosis in the ferric chloride murine model
.
Blood
.
2013
;
121
(
18
):
3733
-
3741
.
2.
Byrnes
JR
,
Wolberg
AS
.
Red blood cells in thrombosis
.
Blood
.
2017
;
130
(
16
):
1795
-
1799
.
3.
Pretorius
E
.
Platelets in HIV: a guardian of host defence or transient reservoir of the virus?
.
Front Immunol
.
2021
;
12
:
649465
.
4.
van Rooy
MJ
,
Pretorius
E
.
Platelet interaction with erythrocytes and propensity to aggregation in essential thrombocythaemia
.
Lancet
.
2016
;
387
(
10024
):
1210
.
5.
Swanepoel
AC
,
Pretorius
E
.
Erythrocyte-platelet interaction in uncomplicated pregnancy
.
Microsc Microanal
.
2014
;
20
(
6
):
1848
-
1860
.
6.
Darling
TK
,
Schenk
MP
,
Zhou
CC
, et al
.
Platelet alpha-granules contribute to organ-specific pathologies in a mouse model of severe malaria
.
Blood Adv
.
2020
;
4
(
1
):
1
-
8
.
7.
McMorran
BJ
,
Marshall
VM
,
de Graaf
C
, et al
.
Platelets kill intraerythrocytic malarial parasites and mediate survival to infection
.
Science
.
2009
;
323
(
5915
):
797
-
800
.
8.
Kho
S
,
Barber
BE
,
Johar
E
, et al
.
Platelets kill circulating parasites of all major Plasmodium species in human malaria
.
Blood
.
2018
;
132
(
12
):
1332
-
1344
.
9.
Beck
Z
,
Jagodzinski
LL
,
Eller
MA
, et al
.
Platelets and erythrocyte-bound platelets bind infectious HIV-1 in plasma of chronically infected patients
.
PLoS One
.
2013
;
8
(
11
):
e81002
.
10.
Wun
T
,
Paglieroni
T
,
Field
CL
, et al
.
Platelet-erythrocyte adhesion in sickle cell disease
.
J Investig Med
.
1999
;
47
(
3
):
121
-
127
.
11.
Wun
T
,
Paglieroni
T
,
Tablin
F
,
Welborn
J
,
Nelson
K
,
Cheung
A
.
Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia
.
J Lab Clin Med
.
1997
;
129
(
5
):
507
-
516
.
12.
Sirolli
V
,
Strizzi
L
,
Di Stante
S
,
Robuffo
I
,
Procopio
A
,
Bonomini
M
.
Platelet activation and platelet-erythrocyte aggregates in end-stage renal disease patients on hemodialysis
.
Thromb Haemost
.
2001
;
86
(
3
):
834
-
839
.
13.
Ockenhouse
CF
,
Tandon
NN
,
Magowan
C
,
Jamieson
GA
,
Chulay
JD
.
Identification of a platelet membrane glycoprotein as a falciparum malaria sequestration receptor
.
Science
.
1989
;
243
(
4897
):
1469
-
1471
.
14.
Hermand
P
,
Gane
P
,
Huet
M
, et al
.
Red cell ICAM-4 is a novel ligand for platelet-activated alpha IIbbeta 3 integrin
.
J Biol Chem
.
2003
;
278
(
7
):
4892
-
4898
.
15.
Klatt
C
,
Krüger
I
,
Zey
S
, et al
.
Platelet-RBC interaction mediated by FasL/FasR induces procoagulant activity important for thrombosis
.
J Clin Invest
.
2018
;
128
(
9
):
3906
-
3925
.
16.
Walker
B
,
Towhid
ST
,
Schmid
E
, et al
.
Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors
.
Am J Physiol Cell Physiol
.
2014
;
306
(
3
):
C291
-
297
.
17.
Klei
TR
,
Meinderts
SM
,
van den Berg
TK
,
van Bruggen
R
.
From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis
.
Front Immunol
.
2017
;
8
:
73
.
18.
Lutz
HU
,
Bogdanova
A
.
Mechanisms tagging senescent red blood cells for clearance in healthy humans
.
Front Physiol
.
2013
;
4
:
387
.
19.
Connor
J
,
Pak
CC
,
Schroit
AJ
.
Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells
.
J Biol Chem
.
1994
;
269
(
4
):
2399
-
2404
.
20.
McEvoy
L
,
Williamson
P
,
Schlegel
R
.
Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages
.
Biochemistry
.
1986
;
83
(
10
):
3311
-
3315
.
21.
Burger
P
,
Hilarius-Stokman
P
,
de Korte
D
,
van den Berg
TK
,
van Bruggen
R
.
CD47 functions as a molecular switch for erythrocyte phagocytosis
.
Blood
.
2012
;
119
(
23
):
5512
-
5521
.
22.
Oldenborg
PA
,
Zheleznyak
A
,
Fang
YF
,
Lagenaur
CF
,
Gresham
HD
,
Lindberg
FP
.
Role of CD47 as a marker of self on red blood cells
.
Science
.
2000
;
288
(
5473
):
2051
-
2054
.
23.
Kay
M
.
Immunoregulation of cellular life span
.
Ann N Y Acad Sci
.
2005
;
1057
:
85
-
111
.
24.
Mebius
RE
,
Kraal
G
.
Structure and function of the spleen
.
Nat Rev Immunol
.
2005
;
5
(
8
):
606
-
616
.
25.
Arese
P
,
Turrini
F
,
Schwarzer
E
.
Band 3/complement-mediated recognition and removal of normally senescent and pathological human erythrocytes
.
Cell Physiol Biochem
.
2005
;
16
(
4-6
):
133
-
146
.
26.
Ayi
K
,
Turrini
F
,
Piga
A
,
Arese
P
.
Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait
.
Blood
.
2004
;
104
(
10
):
3364
-
3371
.
27.
Chadebech
P
,
Bodivit
G
,
Di Liberto
G
, et al
.
Ex vivo activation of red blood cell senescence by plasma from sickle-cell disease patients: correlation between markers and adhesion consequences during acute disease events
.
Biomolecules
.
2021
;
11
(
7
):
963
.
28.
Föller
M
,
Bobbala
D
,
Koka
S
,
Huber
SM
,
Gulbins
E
,
Lang
F
.
Suicide for survival--death of infected erythrocytes as a host mechanism to survive malaria
.
Cell Physiol Biochem
.
2009
;
24
(
3-4
):
133
-
140
.
29.
Sherman
IW
,
Eda
S
,
Winograd
E
.
Erythrocyte aging and malaria
.
Cell Mol Biol (Noisy-le-grand)
.
2004
;
50
(
2
):
159
-
169
.
30.
Turrini
F
,
Ginsburg
H
,
Bussolino
F
,
Pescarmona
GP
,
Serra
MV
,
Arese
P
.
Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage
.
Blood
.
1992
;
80
(
3
):
801
-
808
.
31.
Coupland
LA
,
Cromer
D
,
Davenport
MP
,
Parish
CR
.
A novel fluorescent-based assay reveals that thrombopoietin signaling and Bcl-X(L) influence, respectively, platelet and erythrocyte lifespans
.
Exp Hematol
.
2010
;
38
(
6
):
453
-
461.e1
.
32.
Dholakia
U
,
Bandyopadhyay
S
,
Hod
EA
,
Prestia
KA
.
Determination of RBC survival in C57BL/6 and C57BL/6-Tg(UBC-GFP) mice
.
Comp Med
.
2015
;
65
(
3
):
196
-
201
.
33.
Falati
S
,
Gross
P
,
Merrill-Skoloff
G
,
Furie
BC
,
Furie
B
.
Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse
.
Nat Med
.
2002
;
8
(
10
):
1175
-
1181
.
34.
Li
J
,
van der Wal
DE
,
Zhu
G
, et al
.
Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia
.
Nat Commun
.
2015
;
6
:
7737
.
35.
Nieswandt
B
,
Bergmeier
W
,
Rackebrandt
K
,
Gessner
JE
,
Zirngibl
H
.
Identification of critical antigen-specific mechanisms in the development of immune thrombocytopenic purpura in mice
.
Blood
.
2000
;
96
(
7
):
2520
-
2527
.
36.
Webster
ML
,
Sayeh
E
,
Crow
M
, et al
.
Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbalpha antibodies
.
Blood
.
2006
;
108
(
3
):
943
-
946
.
37.
van Rooijen
N
,
Kors
N
,
Kraal
G
.
Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination
.
J Leukoc Biol
.
1989
;
45
(
2
):
97
-
104
.
38.
Van Rooijen
N
,
Sanders
A
.
Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid
.
Hepatology
.
1996
;
23
(
5
):
1239
-
1243
.
39.
Gottlieb
Y
,
Topaz
O
,
Cohen
LA
, et al
.
Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro
.
Haematologica
.
2012
;
97
(
7
):
994
-
1002
.
40.
Kho
S
,
Qotrunnada
L
,
Leonardo
L
, et al
.
Evaluation of splenic accumulation and colocalization of immature reticulocytes and Plasmodium vivax in asymptomatic malaria: a prospective human splenectomy study
.
PLoS Med
.
2021
;
18
(
5
):
e1003632
.
41.
Provan
D
,
Arnold
DM
,
Bussel
JB
, et al
.
Updated International Consensus report on the investigation and management of primary immune thrombocytopenia
.
Blood Adv
.
2019
;
3
(
22
):
3780
-
3817
.
42.
Goodman
JW
,
Smith
LH
.
Erythrocyte life span in normal mice and in radiation bone marrow chimeras
.
Am J Physiol
.
1961
;
200
:
764
-
770
.
43.
Horký
J
,
Vácha
J
,
Znojil
V
.
Comparison of life span of erythrocytes in some inbred strains of mouse using 14C-labelled glycine
.
Physiol Bohemoslov
.
1978
;
27
(
3
):
209
-
217
.
44.
Boas
FE
,
Forman
L
,
Beutler
E
.
Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
6
):
3077
-
3081
.
45.
Stewart
A
,
Urbaniak
S
,
Turner
M
,
Bessos
H
.
The application of a new quantitative assay for the monitoring of integrin-associated protein CD47 on red blood cells during storage and comparison with the expression of CD47 and phosphatidylserine with flow cytometry
.
Transfusion
.
2005
;
45
(
9
):
1496
-
1503
.
46.
Yasin
Z
,
Witting
S
,
Palascak
MB
,
Joiner
CH
,
Rucknagel
DL
,
Franco
RS
.
Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density, and hemoglobin F
.
Blood
.
2003
;
102
(
1
):
365
-
370
.
47.
Mandal
D
,
Mazumder
A
,
Das
P
,
Kundu
M
,
Basu
J
.
Fas-caspase 8-and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes
.
J Biol Chem
.
2005
;
280
(
47
):
39460
-
39467
.
48.
Sande
CM
,
Maliske
SM
,
Zimmerman
MB
,
Reinke
DA
,
Perepu
U
,
Holman
CJ
.
Impact of splenectomy on post-surgical platelet count [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
4981
.
49.
Vannucchi
AM
,
Barbui
T
.
Thrombocytosis and thrombosis
.
Hematology Am Soc Hematol Educ Program
.
2007
;
2007
(
1
):
363
-
370
.
50.
Kho
S
,
Siregar
NC
,
Qotrunnada
L
, et al
.
Retention of uninfected red blood cells causing congestive splenomegaly is the major mechanism of anemia in malaria
.
Am J Hematol
.
Published online 27 November 2023
https://doi.org/10.1002/ajh.27152.
51.
Akilesh
HM
,
Buechler
MB
,
Duggan
JM
, et al
.
Chronic TLR7 and TLR9 signaling drives anemia via differentiation of specialized hemophagocytes
.
Science
.
2019
;
363
(
6423
):
eaao5213
.
52.
Alexander
WS
,
Roberts
AW
,
Nicola
NA
,
Li
R
,
Metcalf
D
.
Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl
.
Blood
.
1996
;
87
(
6
):
2162
-
2170
.
53.
Khandelwal
S
,
van Rooijen
N
,
Saxena
RK
.
Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation
.
Transfusion
.
2007
;
47
(
9
):
1725
-
1732
.
54.
Franco
RS
,
Puchulu-Campanella
ME
,
Barber
LA
, et al
.
Changes in the properties of normal human red blood cells during in vivo aging
.
Am J Hematol
.
2013
;
88
(
1
):
44
-
51
.
55.
Revelle
BM
,
Scott
D
,
Kogan
TP
,
Zheng
J
,
Beck
PJ
.
Structure-function analysis of P-selectin-sialyl LewisX binding interactions. Mutagenic alteration of ligand binding specificity
.
J Biol Chem
.
1996
;
271
(
8
):
4289
-
4297
.
56.
Matsui
NM
,
Borsig
L
,
Rosen
SD
,
Yaghmai
M
,
Varki
A
,
Embury
SH
.
P-selectin mediates the adhesion of sickle erythrocytes to the endothelium
.
Blood
.
2001
;
98
(
6
):
1955
-
1962
.
57.
Zennadi
R
,
Chien
A
,
Xu
K
,
Batchvarova
M
,
Telen
MJ
.
Sickle red cells induce adhesion of lymphocytes and monocytes to endothelium
.
Blood
.
2008
;
112
(
8
):
3474
-
3483
.
58.
Wong
CH
,
Jenne
CN
,
Petri
B
,
Chrobok
NL
,
Kubes
P
.
Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance
.
Nat Immunol
.
2013
;
14
(
8
):
785
-
792
.
59.
Ogawa
Y
,
Sakamoto
H
,
Oryu
M
, et al
.
Production of macromolecular activators of phagocytosis by lysed platelets
.
Thromb Res
.
2000
;
97
(
5
):
297
-
306
.
60.
Sakamoto
H
,
Firkin
FC
,
Chesterman
CN
.
Stimulation of leukocyte phagocytic activity by the platelet release reaction
.
Pathology
.
1984
;
16
(
2
):
126
-
130
.
61.
Theurl
I
,
Hilgendorf
I
,
Nairz
M
, et al
.
On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver
.
Nat Med
.
2016
;
22
(
8
):
945
-
951
.
62.
Boyle
S
,
White
RH
,
Brunson
A
,
Wun
T
.
Splenectomy and the incidence of venous thromboembolism and sepsis in patients with immune thrombocytopenia
.
Blood
.
2013
;
121
(
23
):
4782
-
4790
.
63.
Ho
G
,
Brunson
A
,
Keegan
THM
,
Wun
T
.
Splenectomy and the incidence of venous thromboembolism and sepsis in patients with autoimmune hemolytic anemia
.
Blood Cells Mol Dis
.
2020
;
81
:
102388
.
64.
Kristinsson
SY
,
Gridley
G
,
Hoover
RN
,
Check
D
,
Landgren
O
.
Long-term risks after splenectomy among 8,149 cancer-free American veterans: a cohort study with up to 27 years follow-up
.
Haematologica
.
2014
;
99
(
2
):
392
-
398
.
65.
Szasz
P
,
Ardestani
A
,
Shoji
BT
,
Brooks
DC
,
Tavakkoli
A
.
Predicting venous thrombosis in patients undergoing elective splenectomy
.
Surg Endosc
.
2020
;
34
(
5
):
2191
-
2196
.
66.
Nørgaard
M
,
Cetin
K
,
Maegbaek
ML
, et al
.
Risk of arterial thrombotic and venous thromboembolic events in patients with primary chronic immune thrombocytopenia: a Scandinavian population-based cohort study
.
Br J Haematol
.
2016
;
174
(
4
):
639
-
642
.
67.
Nørgaard
M
,
Severinsen
MT
,
Lund Maegbaek
M
,
Jensen
AO
,
Cha
S
,
Sørensen
HT
.
Risk of arterial thrombosis in patients with primary chronic immune thrombocytopenia: a Danish population-based cohort study
.
Br J Haematol
.
2012
;
159
(
1
):
109
-
111
.
68.
Sarpatwari
A
,
Bennett
D
,
Logie
JW
, et al
.
Thromboembolic events among adult patients with primary immune thrombocytopenia in the United Kingdom General Practice Research Database
.
Haematologica
.
2010
;
95
(
7
):
1167
-
1175
.
69.
Severinsen
MT
,
Engebjerg
MC
,
Farkas
DK
, et al
.
Risk of venous thromboembolism in patients with primary chronic immune thrombocytopenia: a Danish population-based cohort study
.
Br J Haematol
.
2011
;
152
(
3
):
360
-
362
.
70.
Crary
SE
,
Buchanan
GR
.
Vascular complications after splenectomy for hematologic disorders
.
Blood
.
2009
;
114
(
14
):
2861
-
2868
.
71.
Folsom
AR
,
Wang
W
,
Parikh
R
, et al
.
Hematocrit and incidence of venous thromboembolism
.
Res Pract Thromb Haemost
.
2020
;
4
(
3
):
422
-
428
.
72.
Warny
M
,
Helby
J
,
Birgens
HS
,
Bojesen
SE
,
Nordestgaard
BG
.
Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study
.
J Thromb Haemost
.
2019
;
17
(
11
):
1898
-
1911
.
You do not currently have access to this content.
Sign in via your Institution