• This trial used a class I–restricted TCR and a CD8 coreceptor to enable antigen–specific CD8+ and CD4+ T-cell function.

  • Primary end points of feasibility and tolerability were met in a phase 1 clinical trial of HA-1 TCR-T for recurrent leukemia after HCT.

Abstract

Relapse is the leading cause of death after allogeneic hematopoietic stem cell transplantation (HCT) for leukemia. T cells engineered by gene transfer to express T cell receptors (TCR; TCR-T) specific for hematopoietic-restricted minor histocompatibility (H) antigens may provide a potent selective antileukemic effect post-HCT. We conducted a phase 1 clinical trial using a novel TCR-T product targeting the minor H antigen, HA-1, to treat or consolidate treatment of persistent or recurrent leukemia and myeloid neoplasms. The primary objective was to evaluate the feasibility and safety of administration of HA-1 TCR-T after HCT. CD8+ and CD4+ T cells expressing the HA-1 TCR and a CD8 coreceptor were successfully manufactured from HA-1–disparate HCT donors. One or more infusions of HA-1 TCR-T following lymphodepleting chemotherapy were administered to 9 HCT recipients who had developed disease recurrence after HCT. TCR-T cells expanded and persisted in vivo after adoptive transfer. No dose-limiting toxicities occurred. Although the study was not designed to assess efficacy, 4 patients achieved or maintained complete remissions following lymphodepletion and HA-1 TCR-T, with 1 patient still in remission at >2 years. Single-cell RNA sequencing of relapsing/progressive leukemia after TCR-T therapy identified upregulated molecules associated with T-cell dysfunction or cancer cell survival. HA-1 TCR-T therapy appears feasible and safe and shows preliminary signals of efficacy. This clinical trial was registered at ClinicalTrials.gov as #NCT03326921.

1.
Horowitz
M
,
Schreiber
H
,
Elder
A
, et al
.
Epidemiology and biology of relapse after stem cell transplantation
.
Bone Marrow Transplant
.
2018
;
53
(
11
):
1379
-
1389
.
2.
Bejanyan
N
,
Weisdorf
DJ
,
Logan
BR
, et al
.
Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: a center for international blood and marrow transplant research study
.
Biol Blood Marrow Transplant
.
2015
;
21
(
3
):
454
-
459
.
3.
Chapuis
AG
,
Egan
DN
,
Bar
M
, et al
.
T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant
.
Nat Med
.
2019
;
25
(
7
):
1064
-
1072
.
4.
Fiorenza
S
,
Turtle
CJ
.
CAR-T cell therapy for acute myeloid leukemia: preclinical rationale, current clinical progress, and barriers to success
.
BioDrugs
.
2021
;
35
(
3
):
281
-
302
.
5.
Bleakley
M
,
Riddell
SR
.
Molecules and mechanisms of the graft-versus-leukaemia effect
.
Nat Rev Cancer
.
2004
;
4
(
5
):
371
-
380
.
6.
den Haan
JM
,
Meadows
LM
,
Wang
W
, et al
.
The minor histocompatibility antigen HA-1: a diallelic gene with a single amino acid polymorphism
.
Science
.
1998
;
279
(
5353
):
1054
-
1057
.
7.
Dossa
RG
,
Cunningham
T
,
Sommermeyer
D
, et al
.
Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse
.
Blood
.
2018
;
131
(
1
):
108
-
120
.
8.
Summers
C
,
Sheth
VS
,
Bleakley
M
.
Minor histocompatibility antigen-specific T cells
.
Front Pediatr
.
2020
;
8
:
284
.
9.
Di Stasi
A
,
Tey
SK
,
Dotti
G
, et al
.
Inducible apoptosis as a safety switch for adoptive cell therapy
.
N Engl J Med
.
2011
;
365
(
18
):
1673
-
1683
.
10.
Straathof
KC
,
Pule
MA
,
Yotnda
P
, et al
.
An inducible caspase 9 safety switch for T-cell therapy
.
Blood
.
2005
;
105
(
11
):
4247
-
4254
.
11.
Philip
B
,
Kokalaki
E
,
Mekkaoui
L
, et al
.
A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy
.
Blood
.
2014
;
124
(
8
):
1277
-
1287
.
12.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
13.
Bleakley
M
,
Sehgal
A
,
Seropian
S
, et al
.
Naive T-cell depletion to prevent chronic graft-versus-host disease
.
J Clin Oncol
.
2022
;
40
(
11
):
1174
-
1185
.
14.
Bleakley
M
.
Naive T-cell depletion in stem cell transplantation
.
Blood Adv
.
2020
;
4
(
19
):
4980
.
15.
Berger
C
,
Jensen
MC
,
Lansdorp
PM
,
Gough
M
,
Elliott
C
,
Riddell
SR
.
Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates
.
J Clin Invest
.
2008
;
118
(
1
):
294
-
305
.
16.
Topp
MS
,
Riddell
SR
,
Akatsuka
Y
,
Jensen
MC
,
Blattman
JN
,
Greenberg
PD
.
Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production
.
J Exp Med
.
2003
;
198
(
6
):
947
-
955
.
17.
Ochsenbein
AF
,
Riddell
SR
,
Brown
M
, et al
.
CD27 expression promotes long-term survival of functional effector-memory CD8+ cytotoxic T lymphocytes in HIV-infected patients
.
J Exp Med
.
2004
;
200
(
11
):
1407
-
1417
.
18.
Kimura
MY
,
Pobezinsky
LA
,
Guinter
TI
, et al
.
IL-7 signaling must be intermittent, not continuous, during CD8(+) T cell homeostasis to promote cell survival instead of cell death
.
Nat Immunol
.
2013
;
14
(
2
):
143
-
151
.
19.
Warnock
RA
,
Askari
S
,
Butcher
EC
,
von Andrian
UH
.
Molecular mechanisms of lymphocyte homing to peripheral lymph nodes
.
J Exp Med
.
1998
;
187
(
2
):
205
-
216
.
20.
Choi
H
,
Song
H
,
Jung
YW
.
The roles of CCR7 for the homing of memory CD8+ T cells into their survival niches
.
Immune Netw
.
2020
;
20
(
3
):
e20
.
21.
Cassaday
RD
,
Marks
DI
,
DeAngelo
DJ
, et al
.
Impact of number of cycles on outcomes of patients with relapsed or refractory acute lymphoblastic leukaemia treated with inotuzumab ozogamicin
.
Br J Haematol
.
2020
;
191
(
3
):
e77
-
e81
.
22.
Heaton
H
,
Talman
AM
,
Knights
A
, et al
.
Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes
.
Nat Methods
.
2020
;
17
(
6
):
615
-
620
.
23.
Granja
JM
,
Klemm
S
,
McGinnis
LM
, et al
.
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
.
Nat Biotechnol
.
2019
;
37
(
12
):
1458
-
1465
.
24.
Patel
AP
,
Tirosh
I
,
Trombetta
JJ
, et al
.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
.
Science
.
2014
;
344
(
6190
):
1396
-
1401
.
25.
Puram
SV
,
Tirosh
I
,
Parikh
AS
, et al
.
Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck Cancer
.
Cell
.
2017
;
171
(
7
):
1611
-
1624.e24
.
26.
Kuleshov
MV
,
Jones
MR
,
Rouillard
AD
, et al
.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
.
Nucleic Acids Res
.
2016
;
44
(
W1
):
W90
-
W97
.
27.
Xie
Z
,
Bailey
A
,
Kuleshov
MV
, et al
.
Gene set knowledge discovery with Enrichr
.
Curr Protoc
.
2021
;
1
(
3
):
e90
.
28.
Ashburner
M
,
Ball
CA
,
Blake
JA
, et al
.
Gene ontology: tool for the unification of biology. The gene ontology consortium
.
Nat Genet
.
2000
;
25
(
1
):
25
-
29
.
29.
Gene ontology consortium
.
The gene ontology resource: enriching a GOld mine
.
Nucleic Acids Res
.
2021
;
49
(
D1
):
D325
-
D334
.
30.
You
J
,
Wang
Y
,
Chen
H
,
Jin
F
.
RIPK2: a promising target for cancer treatment
.
Front Pharmacol
.
2023
;
14
:
1192970
.
31.
Song
J
,
Yang
R
,
Wei
R
,
Du
Y
,
He
P
,
Liu
X
.
Pan-cancer analysis reveals RIPK2 predicts prognosis and promotes immune therapy resistance via triggering cytotoxic T lymphocytes dysfunction
.
Mol Med
.
2022
;
28
(
1
):
47
.
32.
Uhl
FM
,
Chen
S
,
O'Sullivan
D
, et al
.
Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans
.
Sci Transl Med
.
2020
;
12
(
567
):
eabb8969
.
33.
Chen
Y
,
Feng
Z
,
Kuang
X
, et al
.
Increased lactate in AML blasts upregulates TOX expression, leading to exhaustion of CD8(+) cytolytic T cells
.
Am J Cancer Res
.
2021
;
11
(
11
):
5726
-
5742
.
34.
Ellis
JM
,
Henson
V
,
Slack
R
,
Ng
J
,
Hartzman
RJ
,
Katovich Hurley
C
.
Frequencies of HLA-A2 alleles in five U.S. population groups. Predominance of A∗02011 and identification of HLA-A∗0231
.
Hum Immunol
.
2000
;
61
(
3
):
334
-
340
.
35.
van Balen
P
,
Jedema
I
,
van Loenen
MM
, et al
.
HA-1H T-cell receptor gene transfer to redirect virus-specific T cells for treatment of hematological malignancies after allogeneic stem cell transplantation: a phase 1 clinical study
.
Front Immunol
.
2020
;
11
:
1804
.
36.
Greenberg
PD
.
Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells
.
Adv Immunol
.
1991
;
49
:
281
-
355
.
37.
Hung
K
,
Hayashi
R
,
Lafond-Walker
A
,
Lowenstein
C
,
Pardoll
D
,
Levitsky
H
.
The central role of CD4(+) T cells in the antitumor immune response
.
J Exp Med
.
1998
;
188
(
12
):
2357
-
2368
.
38.
Kennedy
R
,
Celis
E
.
Multiple roles for CD4+ T cells in anti-tumor immune responses
.
Immunol Rev
.
2008
;
222
:
129
-
144
.
39.
Kennedy
R
,
Celis
E
.
T helper lymphocytes rescue CTL from activation-induced cell death
.
J Immunol
.
2006
;
177
(
5
):
2862
-
2872
.
40.
Giuntoli
RL
,
Lu
J
,
Kobayashi
H
,
Kennedy
R
,
Celis
E
.
Direct costimulation of tumor-reactive CTL by helper T cells potentiate their proliferation, survival, and effector function
.
Clin Cancer Res
.
2002
;
8
(
3
):
922
-
931
.
41.
Borst
J
,
Ahrends
T
,
Babala
N
,
Melief
CJM
,
Kastenmuller
W
.
CD4(+) T cell help in cancer immunology and immunotherapy
.
Nat Rev Immunol
.
2018
;
18
(
10
):
635
-
647
.
42.
Sommermeyer
D
,
Hudecek
M
,
Kosasih
PL
, et al
.
Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo
.
Leukemia
.
2016
;
30
(
2
):
492
-
500
.
43.
Melenhorst
JJ
,
Chen
GM
,
Wang
M
, et al
.
Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells
.
Nature
.
2022
;
602
(
7897
):
503
-
509
.
44.
Cappell
KM
,
Kochenderfer
JN
.
Long-term outcomes following CAR T cell therapy: what we know so far
.
Nat Rev Clin Oncol
.
2023
;
20
(
6
):
359
-
371
.
45.
Lu
YC
,
Parker
LL
,
Lu
T
, et al
.
Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3
.
J Clin Oncol
.
2017
;
35
(
29
):
3322
-
3329
.
46.
Nagarsheth
NB
,
Norberg
SM
,
Sinkoe
AL
, et al
.
TCR-engineered T cells targeting E7 for patients with metastatic HPV-associated epithelial cancers
.
Nat Med
.
2021
;
27
(
3
):
419
-
425
.
47.
Hong
DS
,
Van Tine
BA
,
Biswas
S
, et al
.
Autologous T cell therapy for MAGE-A4(+) solid cancers in HLA-A∗02(+) patients: a phase 1 trial
.
Nat Med
.
2023
;
29
(
1
):
104
-
114
.
48.
Rapoport
AP
,
Stadtmauer
EA
,
Binder-Scholl
GK
, et al
.
NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma
.
Nat Med
.
2015
;
21
(
8
):
914
-
921
.
49.
Porter
DL
,
Hwang
WT
,
Frey
NV
, et al
.
Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia
.
Sci Transl Med
.
2015
;
7
(
303
):
303ra139
.
50.
Ayuk
FA
,
Berger
C
,
Badbaran
A
, et al
.
Axicabtagene ciloleucel in vivo expansion and treatment outcome in aggressive B-cell lymphoma in a real-world setting
.
Blood Adv
.
2021
;
5
(
11
):
2523
-
2527
.
51.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
52.
Hay
KA
,
Gauthier
J
,
Hirayama
AV
, et al
.
Factors associated with durable EFS in adult B-cell ALL patients achieving MRD-negative CR after CD19 CAR T-cell therapy
.
Blood
.
2019
;
133
(
15
):
1652
-
1663
.
53.
Eldershaw
SA
,
Pearce
H
,
Inman
CF
, et al
.
DNA and modified vaccinia Ankara prime-boost vaccination generates strong CD8(+) T cell responses against minor histocompatibility antigen HA-1
.
Br J Haematol
.
2021
;
195
(
3
):
433
-
446
.
54.
Franssen
LE
,
Roeven
MWH
,
Hobo
W
, et al
.
A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma
.
Bone Marrow Transplant
.
2017
;
52
(
10
):
1378
-
1383
.
55.
Thordardottir
S
,
Schaap
N
,
Louer
E
, et al
.
Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo
.
Oncoimmunology
.
2017
;
6
(
3
):
e1285991
.
56.
van der Waart
AB
,
Fredrix
H
,
van der Voort
R
,
Schaap
N
,
Hobo
W
,
Dolstra
H
.
siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice
.
Cancer Immunol Immunother
.
2015
;
64
(
5
):
645
-
654
.
57.
Veatch
JR
,
Singhi
N
,
Srivastava
S
, et al
.
A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells
.
J Clin Invest
.
2021
;
131
(
16
):
e144195
.
58.
Thomas
DA
,
Massague
J
.
TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance
.
Cancer Cell
.
2005
;
8
(
5
):
369
-
380
.
59.
Dong
M
,
Blobe
GC
.
Role of transforming growth factor-beta in hematologic malignancies
.
Blood
.
2006
;
107
(
12
):
4589
-
4596
.
60.
Dahmani
A
,
Delisle
JS
.
TGF-beta in T cell biology: implications for cancer immunotherapy
.
Cancers (Basel)
.
2018
;
10
(
6
):
194
.
61.
Massague
J
,
Sheppard
D
.
TGF-beta signaling in health and disease
.
Cell
.
2023
;
186
(
19
):
4007
-
4037
.
You do not currently have access to this content.
Sign in via your Institution