Abstract

Platelets play crucial roles in hemostasis, thrombosis, and immunity, but our understanding of their complex biogenesis (thrombopoiesis) is currently incomplete. Deeper insight into the mechanisms of platelet biogenesis inside and outside the body is fundamental for managing hematological disorders and for the development of novel cell-based therapies. In this article, we address the current understanding of in vivo thrombopoiesis, including mechanisms of platelet generation from megakaryocytes (proplatelet formation, cytoplasmic fragmentation, and membrane budding) and their physiological location. Progress has been made in replicating these processes in vitro for potential therapeutic application, notably in platelet transfusion and bioengineering of platelets for novel targeted therapies. The current platelet-generating systems and their limitations, particularly yield, scalability, and functionality, are discussed. Finally, we highlight the current controversies and challenges in the field that need to be addressed to achieve a full understanding of these processes, in vivo and in vitro.

1.
Ribatti
D
,
Crivellato
E
.
Giulio Bizzozero and the discovery of platelets
.
Leuk Res
.
2007
;
31
(
10
):
1339
-
1341
.
2.
Gaetano
GD
,
Cerletti
C
.
Platelet adhesion and aggregation and fibrin formation in flowing blood: a historical contribution by Giulio Bizzozero
.
Platelets
.
2002
;
13
(
2
):
85
-
89
.
3.
Gremmel
T
,
Frelinger
AL
,
Michelson
AD
.
Platelet physiology
.
Semin Thromb Hemost
.
2016
;
42
(
3
):
191
-
204
.
4.
Deppermann
C
,
Kubes
P
.
Start a fire, kill the bug: the role of platelets in inflammation and infection
.
Innate Immun
.
2018
;
24
(
6
):
335
-
348
.
5.
Kaushansky
K
.
Thrombopoietin
.
N Engl J Med
.
1998
;
339
(
11
):
746
-
754
.
6.
Noetzli
LJ
,
French
SL
,
Machlus
KR
.
New insights into the differentiation of megakaryocytes from hematopoietic progenitors
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
7
):
1288
-
1300
.
7.
Noh
J-Y
.
Megakaryopoiesis and platelet biology: roles of transcription factors and emerging clinical implications
.
Int J Mol Sci
.
2021
;
22
(
17
):
9615
.
8.
Deutsch
VR
,
Tomer
A
.
Megakaryocyte development and platelet production
.
Br J Haematol
.
2006
;
134
(
5
):
453
-
466
.
9.
Wang
H
,
He
J
,
Xu
C
, et al
.
Decoding human megakaryocyte development
.
Cell Stem Cell
.
2021
;
28
(
3
):
535
-
549.e8
.
10.
Mazzi
S
,
Lordier
L
,
Debili
N
,
Raslova
H
,
Vainchenker
W
.
Megakaryocyte and polyploidization
.
Exp Hematol
.
2018
;
57
:
1
-
13
.
11.
Cunin
P
,
Nigrovic
PA
.
Megakaryocytes as immune cells
.
J Leukoc Biol
.
2019
;
105
(
6
):
1111
-
1121
.
12.
Puhm
F
,
Laroche
A
,
Boilard
E
.
Diversity of megakaryocytes
.
Arterioscler Thromb Vasc Biol
.
2023
;
43
(
11
):
2088
-
2098
.
13.
Tilburg
J
,
Stone
AP
,
Billingsley
JM
, et al
.
Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution
.
Res Pract Thromb Haemost
.
2023
;
7
(
4
):
100158
.
14.
Tilburg
J
,
Becker
IC
,
Italiano
JE
.
Don’t you forget about me(gakaryocytes)
.
Blood
.
2022
;
139
(
22
):
3245
-
3254
.
15.
Pariser
DN
,
Hilt
ZT
,
Ture
SK
, et al
.
Lung megakaryocytes are immune modulatory cells
.
J Clin Invest
.
2021
;
131
(
1
):
e137377
.
16.
Liu
H
,
Liu
J
,
Wang
L
,
Zhu
F
.
In vitro generation of megakaryocytes and platelets
.
Front Cell Dev Biol
.
2021
;
9
:
713434
.
17.
Chen
SJ
,
Hashimoto
K
,
Fujio
K
, et al
.
A let-7 microRNA-RALB axis links the immune properties of iPSC-derived megakaryocytes with platelet producibility
.
Nat Commun
.
2024
;
15
(
1
):
2588
.
18.
Conrad
C
,
Magnen
M
,
Tsui
J
, et al
.
Decoding functional hematopoietic progenitor cells in the adult human lung
.
Res Sq
.
Preprint posted online 28 November 2023
.
19.
Mookerjee
S
,
Foster
HR
,
Waller
AK
,
Ghevaert
CJ
.
In vitro-derived platelets: the challenges we will have to face to assess quality and safety
.
Platelets
.
2020
;
31
(
6
):
724
-
730
.
20.
Aubron
C
,
Flint
AWJ
,
Ozier
Y
,
McQuilten
Z
.
Platelet storage duration and its clinical and transfusion outcomes: a systematic review
.
Crit Care
.
2018
;
22
(
1
):
185
.
21.
Yarovoi
HV
,
Kufrin
D
,
Eslin
DE
, et al
.
Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment
.
Blood
.
2003
;
102
(
12
):
4006
-
4013
.
22.
Poncz
M
,
Zaitsev
S
,
Ahn
H
, et al
.
Packaging of supplemented urokinase into alpha-granules of in vitro-grown megakaryocytes for targeted nascent clot lysis
.
Blood Adv
.
2024
;
8
(
14
):
3798
-
3809
.
23.
Lu
Q
,
Ye
H
,
Wang
K
, et al
.
Bioengineered platelets combining chemotherapy and immunotherapy for postsurgical melanoma treatment: internal core-loaded doxorubicin and external surface-anchored anti-PD-L1 antibody backpacks
.
Nano Lett
.
2022
;
22
(
7
):
3141
-
3150
.
24.
Salgado
R
,
Benoy
I
,
Bogers
J
, et al
.
Platelets and vascular endothelial growth factor (VEGF): a morphological and functional study
.
Angiogenesis
.
2001
;
4
(
1
):
37
-
43
.
25.
Italiano
JE
,
Patel-Hett
S
,
Hartwig
JH
.
Mechanics of proplatelet elaboration
.
J Thromb Haemost
.
2007
;
5
(
suppl 1
):
18
-
23
.
26.
Brown
E
,
Carlin
LM
,
Nerlov
C
,
Lo Celso
C
,
Poole
AW
.
Multiple membrane extrusion sites drive megakaryocyte migration into bone marrow blood vessels
.
Life Sci Alliance
.
2018
;
1
(
2
):
e201800061
.
27.
Kosaki
G
.
In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets?
.
Int J Hematol
.
2005
;
81
(
3
):
208
-
219
.
28.
Machlus
KR
,
Italiano
JE
.
The incredible journey: from megakaryocyte development to platelet formation
.
J Cell Biol
.
2013
;
201
(
6
):
785
-
796
.
29.
Lefrançais
E
,
Looney
MR
.
Platelet biogenesis in the lung circulation
.
Physiology
.
2019
;
34
(
6
):
392
-
401
.
30.
Potts
KS
,
Farley
A
,
Dawson
CA
, et al
.
Membrane budding is a major mechanism of in vivo platelet biogenesis
.
J Exp Med
.
2020
;
217
(
9
):
e20191206
.
31.
Kosaki
G
.
Platelet production by megakaryocytes: protoplatelet theory justifies cytoplasmic fragmentation model
.
Int J Hematol
.
2008
;
88
(
3
):
255
-
267
.
32.
Patel
SR
,
Hartwig
JH
,
Italiano
JE
.
The biogenesis of platelets from megakaryocyte proplatelets
.
J Clin Invest
.
2005
;
115
(
12
):
3348
-
3354
.
33.
Thon
JN
,
Montalvo
A
,
Patel-Hett
S
, et al
.
Cytoskeletal mechanics of proplatelet maturation and platelet release
.
J Cell Biol
.
2010
;
191
(
4
):
861
-
874
.
34.
Geddis
AE
.
The regulation of proplatelet production
.
Haematologica
.
2009
;
94
(
6
):
756
-
759
.
35.
Bluteau
D
,
Lordier
L
,
Di Stefano
A
, et al
.
Regulation of megakaryocyte maturation and platelet formation
.
J Thromb Haemost
.
2009
;
7
(
suppl 1
):
227
-
234
.
36.
Liu
H
,
Welburn
JPI
.
A circle of life: platelet and megakaryocyte cytoskeleton dynamics in health and disease
.
Open Biol
.
2024
;
14
(
6
):
240041
.
37.
Wright
JH
.
The origin and nature of the blood plates
.
Boston Med Surg J
.
1906
;
154
(
23
):
643
-
645
.
38.
Radley
J
,
Scurfield
G
.
The mechanism of platelet release
.
Blood
.
1980
;
56
(
6
):
996
-
999
.
39.
Italiano
JE
,
Lecine
P
,
Shivdasani
RA
,
Hartwig
JH
.
Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes
.
J Cell Biol
.
1999
;
147
(
6
):
1299
-
1312
.
40.
Junt
T
,
Schulze
H
,
Chen
Z
, et al
.
Dynamic visualization of thrombopoiesis within bone marrow
.
Science
.
2007
;
317
(
5845
):
1767
-
1770
.
41.
Kemble
S
,
Dalby
A
,
Lowe
GC
, et al
.
Analysis of preplatelets and their barbell platelet derivatives by imaging flow cytometry
.
Blood Adv
.
2022
;
6
(
9
):
2932
-
2946
.
42.
Schwertz
H
,
Köster
S
,
Kahr
WHA
, et al
.
Anucleate platelets generate progeny
.
Blood
.
2010
;
115
(
18
):
3801
-
3809
.
43.
Becker
RP
,
De Bruyn
PPH
.
The transmural passage of blood cells into myeloid sinusoids and the entry of platelets into the sinusoidal circulation; a scanning electron microscopic investigation
.
Am J Anat
.
1976
;
145
(
2
):
183
-
205
.
44.
Choi
ES
,
Nichol
JL
,
Hokom
MM
,
Hornkohl
AC
,
Hunt
P
.
Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional
.
Blood
.
1995
;
85
(
2
):
402
-
413
.
45.
Wang
Y
,
Hayes
V
,
Jarocha
D
, et al
.
Comparative analysis of human ex vivo–generated platelets vs megakaryocyte-generated platelets in mice: a cautionary tale
.
Blood
.
2015
;
125
(
23
):
3627
-
3636
.
46.
Zhang
L
,
Orban
M
,
Lorenz
M
, et al
.
A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis
.
J Exp Med
.
2012
;
209
(
12
):
2165
-
2181
.
47.
Bornert
A
,
Pertuy
F
,
Lanza
F
,
Gachet
C
,
Léon
C
.
In vivo two-photon imaging of megakaryocytes and proplatelets in the mouse skull bone marrow
.
JoVE
.
2021
(
173
):
e62515
.
48.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature
.
2017
;
544
(
7648
):
105
-
109
.
49.
Jiang
J
,
Woulfe
DS
,
Papoutsakis
ET
.
Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells
.
Blood
.
2014
;
124
(
13
):
2094
-
2103
.
50.
Zhao
X
,
Alibhai
D
,
Walsh
TG
, et al
.
Highly efficient platelet generation in lung vasculature reproduced by microfluidics
.
Nat Commun
.
2023
;
14
(
1
):
4026
.
51.
Ouzegdouh
Y
,
Capron
C
,
Bauer
T
, et al
.
The physical and cellular conditions of the human pulmonary circulation enable thrombopoiesis
.
Exp Hematol
.
2018
;
63
:
22
-
27.e3
.
52.
Zucker-Franklin
D
,
Philipp
CS
.
Platelet production in the pulmonary capillary bed: new ultrastructural evidence for an old concept
.
Am J Pathol
.
2000
;
157
(
1
):
69
-
74
.
53.
Zucker-Franklin
D
,
Petursson
S
.
Thrombocytopoiesis--analysis by membrane tracer and freeze-fracture studies on fresh human and cultured mouse megakaryocytes
.
J Cell Biol
.
1984
;
99
(
2
):
390
-
402
.
54.
Nishimura
S
,
Nagasaki
M
,
Kunishima
S
, et al
.
IL-1α induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs
.
J Cell Biol
.
2015
;
209
(
3
):
453
-
466
.
55.
Djaldetti
M
,
Fishman
P
,
Bessler
H
,
Notti
I
.
SEM observations on the mechanism of platelet release from megakaryocytes
.
Thromb Haemost
.
1979
;
42
(
2
):
611
-
620
.
56.
Ihzumi
T
,
Hattori
A
,
Sanada
M
,
Muto
M
.
Megakaryocyte and platelet formation: a scanning electron microscope study in mouse spleen
.
Arch Histol Jpn
.
1977
;
40
(
4
):
305
-
320
.
57.
Italiano
JE
,
Bender
M
,
Merrill-Skoloff
G
,
Ghevaert
C
,
Nieswandt
B
,
Flaumenhaft
R
.
Microvesicles, but not platelets, bud off from mouse bone marrow megakaryocytes
.
Blood
.
2021
;
138
(
20
):
1998
-
2001
.
58.
Niazi
H
,
Zoghdani
N
,
Couty
L
, et al
.
Murine platelet production is suppressed by S1P release in the hematopoietic niche, not facilitated by blood S1P sensing
.
Blood Adv
.
2019
;
3
(
11
):
1702
-
1713
.
59.
Fuentes
R
,
Wang
Y
,
Hirsch
J
, et al
.
Infusion of mature megakaryocytes into mice yields functional platelets
.
J Clin Invest
.
2010
;
120
(
11
):
3917
-
3922
.
60.
Kim
H
,
Jarocha
D
,
Johnson
I
, et al
.
Studies of infused megakaryocytes into mice support a “catch-and-release” model of pulmonary-centric thrombopoiesis
.
bioRxiv
.
Preprint posted online 5 June 2024
.
61.
Asquith
NL
,
Carminita
E
,
Camacho
V
, et al
.
The bone marrow is the primary site of thrombopoiesis
.
Blood
.
2024
;
143
(
3
):
272
-
278
.
62.
Davis
RE
,
Stenberg
PE
,
Levin
J
,
Beckstead
JH
.
Localization of megakaryocytes in normal mice and following administration of platelet antiserum, 5-fluorouracil, or radiostrontium: evidence for the site of platelet production
.
Exp Hematol
.
1997
;
25
(
7
):
638
-
648
.
63.
Stegner
D
,
Vaneeuwijk
JMM
,
Angay
O
, et al
.
Thrombopoiesis is spatially regulated by the bone marrow vasculature
.
Nat Commun
.
2017
;
8
(
1
):
127
.
64.
Kallinikos-Maniatis
A
.
Megakaryocytes and platelets in central venous and arterial blood
.
Acta Haematol
.
1969
;
42
(
6
):
330
-
335
.
65.
Pedersen
NT
.
Circulating megakaryocytes in blood from the inferior vena cava in adult rats
.
Scand J Haematol
.
1971
;
8
(
3
):
223
-
230
.
66.
Trowbridge
EA
,
Martin
JF
,
Slater
DN
,
Kishk
YT
,
Warren
CW
.
Platelet production: a computer based biological interpretation
.
Thromb Res
.
1983
;
31
(
2
):
329
-
350
.
67.
Xiao
DW
,
Yang
M
,
Yang
J
,
Hon
KL
,
Fok
FT
.
Lung damage may induce thrombocytopenia
.
Platelets
.
2006
;
17
(
5
):
347
-
349
.
68.
Mishra
N
,
Vagha
K
,
Sawhney
S
,
Murhekar
S
,
Vagha
JD
,
Javvaji
CK
.
Estimation of prevalence of thrombocytopenia in cyanotic congenital heart disease: a cross-sectional study among the pediatric population
.
Cureus
.
2024
;
16
(
3
):
e55453
.
69.
Dunois-Lardé
C
,
Capron
C
,
Fichelson
S
,
Bauer
T
,
Cramer-Bordé
E
,
Baruch
D
.
Exposure of human megakaryocytes to high shear rates accelerates platelet production
.
Blood
.
2009
;
114
(
9
):
1875
-
1883
.
70.
Yamamoto
K
,
de Waard
V
,
Fearns
C
,
Loskutoff
DJ
.
Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo
.
Blood
.
1998
;
92
(
8
):
2791
-
2801
.
71.
Poirault-Chassac
S
,
Nguyen
KA
,
Pietrzyk
A
, et al
.
Terminal platelet production is regulated by von Willebrand factor
.
PLoS One
.
2013
;
8
(
5
):
e63810
.
72.
Valet
C
,
Magnen
M
,
Qiu
L
, et al
.
Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression
.
J Clin Invest
.
2022
;
132
(
7
):
e153920
.
73.
Lim
HI
,
Cuker
A
.
Thrombocytopenia and liver disease: pathophysiology and periprocedural management
.
Hematology
.
2022
;
2022
(
1
):
296
-
302
.
74.
Thomson
JA
,
Itskovitz-Eldor
J
,
Shapiro
SS
, et al
.
Embryonic stem cell lines derived from human blastocysts
.
Science
.
1998
;
282
(
5391
):
1145
-
1147
.
75.
Yu
J
,
Vodyanik
MA
,
Smuga-Otto
K
, et al
.
Induced pluripotent stem cell lines derived from human somatic cells
.
Science
.
2007
;
318
(
5858
):
1917
-
1920
.
76.
Takahashi
K
,
Tanabe
K
,
Ohnuki
M
, et al
.
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
.
Cell
.
2007
;
131
(
5
):
861
-
872
.
77.
Thon
JN
,
Dykstra
BJ
,
Beaulieu
LM
.
Platelet bioreactor: accelerated evolution of design and manufacture
.
Platelets
.
2017
;
28
(
5
):
472
-
477
.
78.
Matsunaga
T
,
Tanaka
I
,
Kobune
M
, et al
.
Ex vivo large-scale generation of human platelets from cord blood CD34+ cells
.
Stem Cell
.
2006
;
24
(
12
):
2877
-
2887
.
79.
Takayama
N
,
Nishikii
H
,
Usui
J
, et al
.
Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors
.
Blood
.
2008
;
111
(
11
):
5298
-
5306
.
80.
Lu
S-J
,
Li
F
,
Yin
H
, et al
.
Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice
.
Cell Res
.
2011
;
21
(
3
):
530
-
545
.
81.
Sullenbarger
B
,
Bahng
JH
,
Gruner
R
,
Kotov
N
,
Lasky
LC
.
Prolonged continuous in vitro human platelet production using three-dimensional scaffolds
.
Exp Hematol
.
2009
;
37
(
1
):
101
-
110
.
82.
Lasky
LC
,
Sullenbarger
B
.
Manipulation of oxygenation and flow-induced shear stress can increase the in vitro yield of platelets from cord blood
.
Tissue Eng Part C Methods
.
2011
;
17
(
11
):
1081
-
1088
.
83.
Blin
A
,
Le Goff
A
,
Magniez
A
, et al
.
Microfluidic model of the platelet-generating organ: beyond bone marrow biomimetics
.
Sci Rep
.
2016
;
6
(
1
):
21700
.
84.
Ito
Y
,
Nakamura
S
,
Sugimoto
N
, et al
.
Turbulence activates platelet biogenesis to enable clinical scale ex vivo production
.
Cell
.
2018
;
174
(
3
):
636
-
648.e18
.
85.
Strassel
C
,
Brouard
N
,
Mallo
L
, et al
.
Aryl hydrocarbon receptor–dependent enrichment of a megakaryocytic precursor with a high potential to produce proplatelets
.
Blood
.
2016
;
127
(
18
):
2231
-
2240
.
86.
Pongérard
A
,
Mallo
L
,
Do Sacramento
V
, et al
.
Development of an efficient, ready to use, blood platelet-release device based on two new flow regime parameters: the periodic hydrodynamic loading and the shear stress accumulation
.
N Biotechnol
.
2023
;
77
:
68
-
79
.
87.
Nakagawa
Y
,
Nakamura
S
,
Nakajima
M
, et al
.
Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell–derived megakaryocytes
.
Exp Hematol
.
2013
;
41
(
8
):
742
-
748
.
88.
Avanzi
MP
,
Oluwadara
OE
,
Cushing
MM
,
Mitchell
ML
,
Fischer
S
,
Mitchell
WB
.
A novel bioreactor and culture method drives high yields of platelets from stem cells
.
Transfusion
.
2016
;
56
(
1
):
170
-
178
.
89.
Martinez
AF
,
McMahon
RD
,
Horner
M
,
Miller
WM
.
A uniform-shear rate microfluidic bioreactor for real-time study of proplatelet formation and rapidly-released platelets
.
Biotechnol Prog
.
2017
;
33
(
6
):
1614
-
1629
.
90.
Tozzi
L
,
Laurent
PA
,
Di Buduo
CA
, et al
.
Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production
.
Biomaterials
.
2018
;
178
:
122
-
133
.
91.
Di Buduo
CA
,
Wray
LS
,
Tozzi
L
, et al
.
Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies
.
Blood
.
2015
;
125
(
14
):
2254
-
2264
.
92.
Pallotta
I
,
Lovett
M
,
Kaplan
DL
,
Balduini
A
.
Three-dimensional system for the in vitro study of megakaryocytes and functional platelet production using silk-based vascular tubes
.
Tissue Eng Part C Methods
.
2011
;
17
(
12
):
1223
-
1232
.
93.
Thon
JN
,
Mazutis
L
,
Wu
S
, et al
.
Platelet bioreactor-on-a-chip
.
Blood
.
2014
;
124
(
12
):
1857
-
1867
.
94.
Fujiyama
S
,
Hori
N
,
Sato
T
,
Enosawa
S
,
Murata
M
,
Kobayashi
E
.
Development of an ex vivo xenogeneic bone environment producing human platelet-like cells
.
PLoS One
.
2020
;
15
(
4
):
e0230507
.
95.
Metcalf
D
.
Blood. Thrombopoietin--at last
.
Nature
.
1994
;
369
(
6481
):
519
-
520
.
96.
Thon
JN
,
Medvetz
DA
,
Karlsson
SM
,
Italiano
JE
.
Road blocks in making platelets for transfusion
.
J Thromb Haemost
.
2015
;
13
(
suppl 1
):
S55
-
S62
.
97.
Do Sacramento
V
,
Mallo
L
,
Freund
M
, et al
.
Functional properties of human platelets derived in vitro from CD34+ cells
.
Sci Rep
.
2020
;
10
(
1
):
914
.
98.
Strassel
C
,
Gachet
C
,
Lanza
F
.
On the way to in vitro platelet production
.
Front Med
.
2018
;
5
:
239
.
99.
Lambert
MP
,
Sullivan
SK
,
Fuentes
R
,
French
DL
,
Poncz
M
.
Challenges and promises for the development of donor-independent platelet transfusions
.
Blood
.
2013
;
121
(
17
):
3319
-
3324
.
100.
Sugimoto
N
,
Eto
K
.
Generation and manipulation of human iPSC-derived platelets
.
Cell Mol Life Sci
.
2021
;
78
(
7
):
3385
-
3401
.
101.
Sim
X
,
Poncz
M
,
Gadue
P
,
French
DL
.
Understanding platelet generation from megakaryocytes: implications for in vitro-derived platelets
.
Blood
.
2016
;
127
(
10
):
1227
-
1233
.
102.
Sugimoto
N
,
Kanda
J
,
Nakamura
S
, et al
.
iPLAT1: the first-in-human clinical trial of iPSC-derived platelets as a phase 1 autologous transfusion study
.
Blood
.
2022
;
140
(
22
):
2398
-
2402
.
You do not currently have access to this content.
Sign in via your Institution