• Abundant aberrant somatic hypermutation contributes to the promiscuity of MYC rearrangement partners in HGBCL-DH-BCL2.

  • MYC rearrangement architecture in HGBCL-DH-BCL2 preserves expression of both the B-cell receptor and BCL2 from the preexisting IGH::BCL2.

Abstract

Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements (“double hit”; HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of and mechanisms driving IG vs non-IG MYC rearrangements have not been elucidated. Here, we used custom targeted capture and/or whole-genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, although BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because 1 IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B-cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.

1.
Ott
G
,
Rosenwald
A
,
Campo
E
.
Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification
.
Blood
.
2013
;
122
(
24
):
3884
-
3891
.
2.
Campo
E
,
Jaffe
ES
,
Cook
JR
, et al
.
The International Consensus Classification of mature lymphoid neoplasms: a report from the Clinical Advisory Committee
.
Blood
.
2022
;
140
(
11
):
1229
-
1253
.
3.
Carbone
A
,
Roulland
S
,
Gloghini
A
, et al
.
Follicular lymphoma
.
Nat Rev Dis Primer
.
2019
;
5
(
1
):
83
.
4.
Scott
DW
,
King
RL
,
Staiger
AM
, et al
.
High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology
.
Blood
.
2018
;
131
(
18
):
2060
-
2064
.
5.
Rosenwald
A
,
Bens
S
,
Advani
R
, et al
.
Prognostic significance of MYC rearrangement and translocation partner in diffuse large B-cell lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium
.
J Clin Oncol
.
2019
;
37
(
35
):
3359
-
3368
.
6.
Iqbal
J
,
Sanger
WG
,
Horsman
DE
, et al
.
BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma
.
Am J Pathol
.
2004
;
165
(
1
):
159
-
166
.
7.
Alaggio
R
,
Amador
C
,
Anagnostopoulos
I
, et al
.
The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms
.
Leukemia
.
2022
;
36
(
7
):
1720
-
1748
.
8.
Alduaij
W
,
Collinge
B
,
Ben-Neriah
S
, et al
.
Molecular determinants of clinical outcomes in a real-world diffuse large B-cell lymphoma population
.
Blood
.
2023
;
141
(
20
):
2493
-
2507
.
9.
Ennishi
D
,
Jiang
A
,
Boyle
M
, et al
.
Double-hit gene expression signature defines a distinct subgroup of germinal center B-cell-like diffuse large B-cell lymphoma
.
J Clin Oncol
.
2019
;
37
(
3
):
190
-
201
.
10.
Davies
JR
,
Hilton
LK
,
Jiang
A
, et al
.
Comparison of MHG and DZsig reveals shared biology and a core overlap group with inferior prognosis in DLBCL
.
Blood Adv
.
2023
;
7
(
20
):
6156
-
6162
.
11.
Chong
LC
,
Ben-Neriah
S
,
Slack
GW
, et al
.
High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology
.
Blood Adv
.
2018
;
2
(
20
):
2755
-
2765
.
12.
Pedersen
M
,
Gang
AO
,
Poulsen
TS
, et al
.
MYC translocation partner gene determines survival of patients with large B-cell lymphoma with MYC- or double-hit MYC/BCL2 translocations
.
Eur J Haematol
.
2014
;
92
(
1
):
42
-
48
.
13.
Küppers
R
,
Dalla-Favera
R
.
Mechanisms of chromosomal translocations in B cell lymphomas
.
Oncogene
.
2001
;
20
(
40
):
5580
-
5594
.
14.
Summers
KE
,
Goff
LK
,
Wilson
AG
,
Gupta
RK
,
Lister
TA
,
Fitzgibbon
J
.
Frequency of the bcl-2/IgH rearrangement in normal individuals: implications for the monitoring of disease in patients with follicular lymphoma
.
J Clin Oncol
.
2001
;
19
(
2
):
420
-
424
.
15.
Hirt
C
,
Camargo
MC
,
Yu
KJ
,
Hewitt
SM
,
Dölken
G
,
Rabkin
CS
.
Risk of follicular lymphoma associated with BCL2 translocations in peripheral blood
.
Leuk Lymphoma
.
2015
;
56
(
9
):
2625
-
2629
.
16.
Roulland
S
,
Kelly
RS
,
Morgado
E
, et al
.
t(14;18) translocation: a predictive blood biomarker for follicular lymphoma
.
J Clin Oncol
.
2014
;
32
(
13
):
1347
-
1355
.
17.
Schroers-Martin
JG
,
Soo
J
,
Brisou
G
, et al
.
Tracing founder mutations in circulating and tissue-resident follicular lymphoma precursors
.
Cancer Discov
.
2023
;
13
(
6
):
1310
-
1323
.
18.
Lu
Z
,
Tsai
AG
,
Akasaka
T
, et al
.
BCL6 breaks occur at different AID sequence motifs in Ig-BCL6 and non-Ig-BCL6 rearrangements
.
Blood
.
2013
;
121
(
22
):
4551
-
4554
.
19.
Hübschmann
D
,
Kleinheinz
K
,
Wagener
R
, et al
.
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas
.
Leukemia
.
2021
;
35
(
7
):
2002
-
2016
.
20.
Thomas
N
,
Dreval
K
,
Gerhard
DS
, et al
.
Genetic subgroups inform on pathobiology in adult and pediatric Burkitt lymphoma
.
Blood
.
2023
;
141
(
8
):
904
-
916
.
21.
Ye
X
,
Ren
W
,
Liu
D
, et al
.
Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas
.
J Exp Med
.
2021
;
218
(
2
):
e20200573
.
22.
Bal
E
,
Kumar
R
,
Hadigol
M
, et al
.
Super-enhancer hypermutation alters oncogene expression in B cell lymphoma
.
Nature
.
2022
;
607
(
7920
):
808
-
815
.
23.
Arthur
SE
,
Jiang
A
,
Grande
BM
, et al
.
Genome-wide discovery of somatic regulatory variants in diffuse large B-cell lymphoma
.
Nat Commun
.
2018
;
9
(
1
):
4001
.
24.
Machado
HE
,
Mitchell
E
,
Øbro
NF
, et al
.
Diverse mutational landscapes in human lymphocytes
.
Nature
.
2022
;
608
(
7924
):
724
-
732
.
25.
Meng
FL
,
Du
Z
,
Federation
A
, et al
.
Convergent transcription at intragenic super-enhancers targets AID-initiated genomic instability
.
Cell
.
2014
;
159
(
7
):
1538
-
1548
.
26.
Qian
J
,
Wang
Q
,
Dose
M
, et al
.
B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity
.
Cell
.
2014
;
159
(
7
):
1524
-
1537
.
27.
Pasqualucci
L
,
Migliazza
A
,
Fracchiolla
N
, et al
.
BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
20
):
11816
-
11821
.
28.
Pasqualucci
L
,
Neumeister
P
,
Goossens
T
, et al
.
Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas
.
Nature
.
2001
;
412
(
6844
):
341
-
346
.
29.
Shen
HM
,
Peters
A
,
Baron
B
,
Zhu
X
,
Storb
U
.
Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes
.
Science
.
1998
;
280
(
5370
):
1750
-
1752
.
30.
Zhang
C
,
Stelloo
E
,
Barrans
S
, et al
.
Non-IG::MYC in diffuse large B-cell lymphoma confers variable genomic configurations and MYC transactivation potential
.
Leukemia
.
2024
;
38
(
3
):
621
-
629
.
31.
Grande
BM
,
Gerhard
DS
,
Jiang
A
, et al
.
Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma
.
Blood
.
2019
;
133(12)
:
1313
-
1324
.
32.
Morin
RD
,
Mungall
K
,
Pleasance
E
, et al
.
Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing
.
Blood
.
2013
;
122
(
7
):
1256
-
1265
.
33.
Hilton
LK
,
Tang
J
,
Ben-Neriah
S
, et al
.
The double-hit signature identifies double-hit diffuse large B-cell lymphoma with genetic events cryptic to FISH
.
Blood
.
2019
;
134
(
18
):
1528
-
1532
.
34.
Hilton
LK
,
Ngu
HS
,
Collinge
B
, et al
.
Relapse timing is associated with distinct evolutionary dynamics in diffuse large B-cell lymphoma
.
J Clin Oncol
.
2023
;
41(25)
:
4164-4177
.
35.
Kridel
R
,
Chan
FC
,
Mottok
A
, et al
.
Histological transformation and progression in follicular lymphoma: a clonal evolution study
.
PLoS Med
.
2016
;
13
(
12
):
e1002197
.
36.
Dreval
K
,
Hilton
LK
,
Cruz
M
, et al
.
Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns
.
Blood
.
2023
;
142
(
6
):
561
-
573
.
37.
Collinge
B
,
Ben-Neriah
S
,
Chong
L
, et al
.
The impact of MYC and BCL2 structural variants in tumors of DLBCL morphology and mechanisms of false-negative MYC IHC
.
Blood
.
2021
;
137
(
16
):
2196
-
2208
.
38.
Cameron
DL
,
Baber
J
,
Shale
C
, et al
.
GRIDSS2: comprehensive characterisation of somatic structural variation using single breakend variants and structural variant phasing
.
Genome Biol
.
2021
;
22(1):202
.
39.
Chen
X
,
Schulz-Trieglaff
O
,
Shaw
R
, et al
.
Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
.
Bioinformatics
.
2016
;
32
(
8
):
1220
-
1222
.
40.
Cameron
D
,
Dong
R
.
Structural Variant Annotation: variant annotations for structural variants. 2020. R package version 1.6.0
. Accessed 27 October 2020. https://www.bioconductor.org/packages/release/bioc/html/StructuralVariantAnnotation.html.
41.
Kim
S
,
Scheffler
K
,
Halpern
AL
, et al
.
Strelka2: fast and accurate calling of germline and somatic variants
.
Nat Methods
.
2018
;
15
(
8
):
591
-
594
.
42.
Wilm
A
,
Aw
PP
,
Bertrand
D
, et al
.
LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets
.
Nucleic Acids Res
.
2012
;
40
(
22
):
11189
-
11201
.
43.
Benjamin
D
,
Sato
T
,
Cibulskis
K
, et al
.
Calling somatic SNVs and indels with mutect2
.
BioRxiv
.
Preprint posted online 2 December 2019
.
44.
Gu
Z
,
Gu
L
,
Eils
R
,
Schlesner
M
,
Brors
B
.
circlize implements and enhances circular visualization in R
.
Bioinformatics
.
2014
;
30
(
19
):
2811
-
2812
.
45.
Zhao
H
,
Sun
Z
,
Wang
J
,
Huang
H
,
Kocher
JP
,
Wang
L
.
CrossMap: a versatile tool for coordinate conversion between genome assemblies
.
Bioinformatics
.
2014
;
30
(
7
):
1006
-
1007
.
46.
Bolotin
DA
,
Poslavsky
S
,
Mitrophanov
I
, et al
.
MiXCR: software for comprehensive adaptive immunity profiling
.
Nat Methods
.
2015
;
12
(
5
):
380
-
381
.
47.
Bolotin
DA
,
Poslavsky
S
,
Davydov
AN
, et al
.
Antigen receptor repertoire profiling from RNA-seq data
.
Nat Biotechnol
.
2017
;
35
(
10
):
908
-
911
.
48.
Islam
SA
,
Díaz-Gay
M
,
Wu
Y
, et al
.
Uncovering novel mutational signatures by de novo extraction with sigprofilerextractor
.
Cell Genom
.
2022
;
2
(
11
):
100179
.
49.
Yonetani
N
,
Ueda
C
,
Akasaka
T
,
Nishikori
M
,
Uchiyama
T
,
Ohno
H
.
Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5’ region of BCL2 in B-cell tumors
.
Jpn J Cancer Res
.
2001
;
92
(
9
):
933
-
940
.
50.
Kasar
S
,
Kim
J
,
Improgo
R
, et al
.
Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution
.
Nat Commun
.
2015
;
6
:
8866
.
51.
Matthews
AJ
,
Zheng
S
,
DiMenna
LJ
,
Chaudhuri
J
.
Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair
.
Adv Immunol
.
2014
;
122
:
1
-
57
.
52.
Stavnezer
J
,
Guikema
JEJ
,
Schrader
CE
.
Mechanism and regulation of class switch recombination
.
Annu Rev Immunol
.
2008
;
26
(
1
):
261
-
292
.
53.
Poulsen
LK
,
Hummelshoj
L
.
Triggers of IgE class switching and allergy development
.
Ann Med
.
2007
;
39
(
6
):
440
-
456
.
54.
Xu
Z
,
Zan
H
,
Pone
EJ
,
Mai
T
,
Casali
P
.
Immunoglobulin class-switch DNA recombination: induction, targeting and beyond
.
Nat Rev Immunol
.
2012
;
12
(
7
):
517
-
531
.
55.
Kumari
N
,
Das
K
,
Sharma
S
, et al
.
Evaluation of potential role of R-loop and G-quadruplex DNA in the fragility of c-MYC during chromosomal translocation associated with Burkitt’s lymphoma
.
J Biol Chem
.
2023
;
299
(
12
):
105431
.
56.
Barth
TFE
,
Müller
S
,
Pawlita
M
, et al
.
Homogeneous immunophenotype and paucity of secondary genomic aberrations are distinctive features of endemic but not of sporadic Burkitt’s lymphoma and diffuse large B-cell lymphoma with MYC rearrangement
.
J Pathol
.
2004
;
203
(
4
):
940
-
945
.
57.
Ruminy
P
,
Etancelin
P
,
Couronne
L
, et al
.
The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma
.
Leukemia
.
2011
;
25
(
4
):
681
-
688
.
58.
Mann
RB
,
Jaffe
ES
,
Braylan
RC
, et al
.
Non-endemic Burkitt’s lymphoma. A B-cell tumor related to germinal centers
.
N Engl J Med
.
1976
;
295
(
13
):
685
-
691
.
59.
Knezevich
S
,
Ludkovski
O
,
Salski
C
, et al
.
Concurrent translocation of BCL2 and MYC with a single immunoglobulin locus in high-grade B-cell lymphomas
.
Leukemia
.
2005
;
19
(
4
):
659
-
663
.
60.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568.e14
.
61.
Shustik
J
,
Han
G
,
Farinha
P
, et al
.
Correlations between BCL6 rearrangement and outcome in patients with diffuse large B-cell lymphoma treated with CHOP or R-CHOP
.
Haematologica
.
2010
;
95
(
1
):
96
-
101
.
62.
Shen
HM
,
Michael
N
,
Kim
N
,
Storb
U
.
The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells
.
Int Immunol
.
2000
;
12
(
7
):
1085
-
1093
.
63.
Dominguez-Sola
D
,
Victora
GD
,
Ying
CY
, et al
.
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry
.
Nat Immunol
.
2012
;
13
(
11
):
1083
-
1091
.
64.
Liu
YJ
,
Mason
DY
,
Johnson
GD
, et al
.
Germinal center cells express bcl-2 protein after activation by signals which prevent their entry into apoptosis
.
Eur J Immunol
.
1991
;
21
(
8
):
1905
-
1910
.
65.
Chiarle
R
,
Zhang
Y
,
Frock
RL
, et al
.
Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
.
Cell
.
2011
;
147
(
1
):
107
-
119
.
66.
Klein
IA
,
Resch
W
,
Jankovic
M
, et al
.
Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
.
Cell
.
2011
;
147
(
1
):
95
-
106
.
67.
Hakim
O
,
Resch
W
,
Yamane
A
, et al
.
DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes
.
Nature
.
2012
;
484
(
7392
):
69
-
74
.
68.
Lieber
MR
.
Mechanisms of human lymphoid chromosomal translocations
.
Nat Rev Cancer
.
2016
;
16
(
6
):
387
-
398
.
69.
Xiong
H
,
Dolpady
J
,
Wabl
M
,
Curotto de Lafaille
MA
,
Lafaille
JJ
.
Sequential class switching is required for the generation of high affinity IgE antibodies
.
J Exp Med
.
2012
;
209
(
2
):
353
-
364
.
70.
Koenig
JFE
,
Knudsen
NPH
,
Phelps
A
, et al
.
Type 2-polarized memory B cells hold allergen-specific IgE memory
.
Sci Transl Med
.
2024
;
16
(
733
):
eadi0944
.
71.
Ota
M
,
Hoehn
KB
,
Fernandes-Braga
W
, et al
.
CD23+IgG1+ memory B cells are poised to switch to pathogenic IgE production in food allergy
.
Sci Transl Med
.
2024
;
16
(
733
):
eadi0673
.
72.
Okosun
J
,
Bodor
C
,
Wang
J
, et al
.
Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma
.
Nat Genet
.
2014
;
46
(
2
):
176
-
181
.
73.
Kuppers
R
.
Mechanisms of B-cell lymphoma pathogenesis
.
Nat Rev Cancer
.
2005
;
5
(
4
):
251
-
262
.
You do not currently have access to this content.
Sign in via your Institution