Abstract

Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.

1.
Alter
BP
,
Giri
N
,
Savage
SA
,
Rosenberg
PS
.
Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after fifteen years of follow-up
.
Haematologica
.
2018
;
103
(
1
):
30
-
39
.
2.
Warren
AJ
.
Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome
.
Adv Biol Regul
.
2018
;
67
:
109
-
127
.
3.
Boocock
GRB
,
Morrison
JA
,
Popovic
M
, et al
.
Mutations in SBDS are associated with Shwachman-Diamond syndrome
.
Nat Genet
.
2003
;
33
(
1
):
97
-
101
.
4.
Woloszynek
JR
,
Rothbaum
RJ
,
Rawls
AS
, et al
.
Mutations of the SBDS gene are present in most patients with Shwachman-Diamond syndrome
.
Blood
.
2004
;
104
(
12
):
3588
-
3590
.
5.
Dror
Y
,
Durie
P
,
Ginzberg
H
, et al
.
Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: a prospective 5-year follow-up study
.
Exp Hematol
.
2002
;
30
(
7
):
659
-
669
.
6.
Donadieu
J
,
Fenneteau
O
,
Beaupain
B
, et al
.
Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome
.
Haematologica
.
2012
;
97
(
9
):
1312
-
1319
.
7.
Cesaro
S
,
Pegoraro
A
,
Sainati
L
, et al
.
A prospective study of hematologic complications and long-term survival of Italian patients affected by Shwachman-Diamond syndrome
.
J Pediatr
.
2020
;
219
:
196
-
201.e1
.
8.
Myers
KC
,
Furutani
E
,
Weller
E
, et al
.
Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study
.
Lancet Haematol
.
2020
;
7
(
3
):
e238
-
e246
.
9.
Furutani
E
,
Liu
S
,
Galvin
A
, et al
.
Hematologic complications with age in Shwachman-Diamond syndrome
.
Blood Adv
.
2022
;
6
(
1
):
297
-
306
.
10.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
.
Nat Med
.
2020
;
26
(
10
):
1549
-
1556
.
11.
Valli
R
,
Pressato
B
,
Marletta
C
, et al
.
Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms
.
Mol Cytogenet
.
2013
;
6
(
1
):
56
.
12.
Revy
P
,
Kannengiesser
C
,
Fischer
A
.
Somatic genetic rescue in Mendelian haematopoietic diseases
.
Nat Rev Genet
.
2019
;
20
(
10
):
582
-
598
.
13.
Reilly
CR
,
Shimamura
A
.
Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances
.
Blood
.
2023
;
141
(
13
):
1513
-
1523
.
14.
Dragon
F
,
Gallagher
JEG
,
Compagnone-Post
PA
, et al
.
A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis
.
Nature
.
2002
;
417
(
6892
):
967
-
970
.
15.
Grandi
P
,
Rybin
V
,
Bassler
J
, et al
.
90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors
.
Mol Cell
.
2002
;
10
(
1
):
105
-
115
.
16.
Kornprobst
M
,
Turk
M
,
Kellner
N
, et al
.
Architecture of the 90S Pre-ribosome: a structural view on the birth of the eukaryotic ribosome
.
Cell
.
2016
;
166
(
2
):
380
-
393
.
17.
Chaker-Margot
M
,
Barandun
J
,
Hunziker
M
,
Klinge
S
.
Architecture of the yeast small subunit processome
.
Science
.
2017
;
355
(
6321
):
eaal1880
.
18.
Sun
Q
,
Zhu
X
,
Qi
J
, et al
.
Molecular architecture of the 90S small subunit pre-ribosome
.
Elife
.
2017
;
6
:
e22086
.
19.
Menne
TF
,
Goyenechea
B
,
Sánchez-Puig
N
, et al
.
The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast
.
Nat Genet
.
2007
;
39
(
4
):
486
-
495
.
20.
Finch
AJ
,
Hilcenko
C
,
Basse
N
, et al
.
Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome
.
Genes Dev
.
2011
;
25
(
9
):
917
-
929
.
21.
Weis
F
,
Giudice
E
,
Churcher
M
, et al
.
Mechanism of eIF6 release from the nascent 60S ribosomal subunit
.
Nat Struct Mol Biol
.
2015
;
22
(
11
):
914
-
919
.
22.
Jaako
P
,
Faille
A
,
Tan
S
, et al
.
eIF6 rebinding dynamically couples ribosome maturation and translation
.
Nat Commun
.
2022
;
13
(
1
):
1562
.
23.
Stepensky
P
,
Chacón-Flores
M
,
Kim
KH
, et al
.
Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in aShwachman-Diamond like syndrome
.
J Med Genet
.
2017
;
54
(
8
):
558
-
566
.
24.
Tan
QK-G
,
Cope
H
,
Spillmann
RC
, et al
.
Further evidence for the involvement of EFL1 in a Shwachman-Diamond-like syndrome and expansion of the phenotypic features
.
Cold Spring Harb Mol Case Stud
.
2018
;
4
(
5
):
a003046
.
25.
Tan
S
,
Kermasson
L
,
Hoslin
A
, et al
.
EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome
.
Blood
.
2019
;
134
(
3
):
277
-
290
.
26.
Tummala
H
,
Walne
AJ
,
Williams
M
, et al
.
DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation
.
Am J Hum Genet
.
2016
;
99
(
1
):
115
-
124
.
27.
Dhanraj
S
,
Matveev
A
,
Li
H
, et al
.
Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome
.
Blood
.
2017
;
129
(
11
):
1557
-
1562
.
28.
Bellanné-Chantelot
C
,
Schmaltz-Panneau
B
,
Marty
C
, et al
.
Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome
.
Blood
.
2018
;
132
(
12
):
1318
-
1331
.
29.
Carapito
R
,
Konantz
M
,
Paillard
C
, et al
.
Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features
.
J Clin Invest
.
2017
;
127
(
11
):
4090
-
4103
.
30.
Juaire
KD
,
Lapouge
K
,
Becker
MMM
, et al
.
Structural and functional impact of SRP54 mutations causing severe congenital neutropenia
.
Structure
.
2021
;
29
(
1
):
15
-
28.e7
.
31.
Tan
S
,
Kermasson
L
,
Hilcenko
C
, et al
.
Somatic genetic rescue of a germline ribosome assembly defect
.
Nat Commun
.
2021
;
12
(
1
):
5044
.
32.
Kennedy
AL
,
Myers
KC
,
Bowman
J
, et al
.
Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome
.
Nat Commun
.
2021
;
12
(
1
):
1334
.
33.
In
K
,
Zaini
MA
,
Müller
C
,
Warren
AJ
,
von Lindern
M
,
Calkhoven
CF
.
Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPα and C/EBPβ mRNAs
.
Nucleic Acids Res
.
2016
;
44
(
9
):
4134
-
4146
.
34.
Rawls
AS
,
Gregory
AD
,
Woloszynek
JR
,
Liu
F
,
Link
DC
.
Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential
.
Blood
.
2007
;
110
(
7
):
2414
-
2422
.
35.
Orelio
C
,
Verkuijlen
P
,
Geissler
J
,
van den Berg
TK
,
Kuijpers
TW
.
SBDS expression and localization at the mitotic spindle in human myeloid progenitors
.
PLoS One
.
2009
;
4
(
9
):
e7084
.
36.
Zambetti
NA
,
Bindels
EMJ
,
Van Strien
PMH
, et al
.
Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes
.
Haematologica
.
2015
;
100
(
10
):
1285
-
1293
.
37.
Hirschhorn
R
,
Yang
DR
,
Israni
A
,
Huie
ML
,
Ownby
DR
.
Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery
.
Am J Hum Genet
.
1994
;
55
(
1
):
59
-
68
.
38.
Buonocore
F
,
Kühnen
P
,
Suntharalingham
JP
, et al
.
Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans
.
J Clin Invest
.
2017
;
127
(
5
):
1700
-
1713
.
39.
Narumi
S
,
Amano
N
,
Ishii
T
, et al
.
SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7
.
Nat Genet
.
2016
;
48
(
7
):
792
-
797
.
40.
Tesi
B
,
Davidsson
J
,
Voss
M
, et al
.
Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms
.
Blood
.
2017
;
129
(
16
):
2266
-
2279
.
41.
Pastor
VB
,
Sahoo
SS
,
Boklan
J
, et al
.
Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7
.
Haematologica
.
2018
;
103
(
3
):
427
-
437
.
42.
Wong
JC
,
Bryant
V
,
Lamprecht
T
, et al
.
Germline SAMD9 and SAMD9L mutations are associated with extensive genetic evolution and diverse hematologic outcomes
.
JCI Insight
.
2018
;
3
(
14
):
e121086
.
43.
Sahoo
SS
,
Pastor
VB
,
Goodings
C
, et al
.
Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes
.
Nat Med
.
2021
;
27
(
10
):
1806
-
1817
.
44.
Davidsson
J
,
Puschmann
A
,
Tedgård
U
,
Bryder
D
,
Nilsson
L
,
Cammenga
J
.
SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies
.
Leukemia
.
2018
;
32
(
5
):
1106
-
1115
.
45.
Inaba
T
,
Honda
H
,
Matsui
H
.
The enigma of monosomy 7
.
Blood
.
2018
;
131
(
26
):
2891
-
2898
.
46.
Elghetany
MT
,
Alter
BP
.
p53 protein overexpression in bone marrow biopsies of patients with Shwachman-Diamond syndrome has a prevalence similar to that of patients with refractory anemia
.
Arch Pathol Lab Med
.
2002
;
126
(
4
):
452
-
455
.
47.
Sieff
CA
,
Yang
J
,
Merida-Long
LB
,
Lodish
HF
.
Pathogenesis of the erythroid failure in Diamond Blackfan anaemia
.
Br J Haematol
.
2010
;
148
(
4
):
611
-
622
.
48.
Jaako
P
,
Debnath
S
,
Olsson
K
, et al
.
Disruption of the 5S RNP-Mdm2 interaction significantly improves the erythroid defect in a mouse model for Diamond-Blackfan anemia
.
Leukemia
.
2015
;
29
(
11
):
2221
-
2229
.
49.
Frattini
A
,
Bolamperti
S
,
Valli
R
, et al
.
Enhanced p53 levels are involved in the reduced mineralization capacity of osteoblasts derived from Shwachman-Diamond syndrome subjects
.
Int J Mol Sci
.
2021
;
22
(
24
):
13331
.
50.
Barlow
JL
,
Drynan
LF
,
Hewett
DR
, et al
.
A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome
.
Nat Med
.
2010
;
16
(
1
):
59
-
66
.
51.
Tourlakis
ME
,
Zhang
S
,
Ball
HL
, et al
.
In vivo senescence in the Sbds-deficient murine pancreas: cell-type specific consequences of translation insufficiency
.
PLoS Genet
.
2015
;
11
(
6
):
e1005288
.
52.
Sloan
KE
,
Bohnsack
MT
,
Watkins
NJ
.
The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress
.
Cell Rep
.
2013
;
5
(
1
):
237
-
247
.
53.
Xia
J
,
Miller
CA
,
Baty
J
, et al
.
Somatic mutations and clonal hematopoiesis in congenital neutropenia
.
Blood
.
2018
;
131
(
4
):
408
-
416
.
54.
Valli
R
,
Minelli
A
,
Galbiati
M
, et al
.
Shwachman-Diamond syndrome with clonal interstitial deletion of the long arm of chromosome 20 in bone marrow: haematological features, prognosis and genomic instability
.
Br J Haematol
.
2019
;
184
(
6
):
974
-
981
.
55.
Lee
S
,
Shin
CH
,
Lee
J
, et al
.
Somatic uniparental disomy mitigates the most damaging EFL1 allele combination in Shwachman-Diamond syndrome
.
Blood
.
2021
;
138
(
21
):
2117
-
2128
.
56.
Machado
HE
,
Øbro
NF
,
Williams
N
, et al
.
Convergent somatic evolution commences in utero in a germline ribosomopathy
.
Nat Commun
.
2023
;
14
(
1
):
1
-
14
.
57.
Kennedy
SR
,
Schmitt
MW
,
Fox
EJ
, et al
.
Detecting ultralow-frequency mutations by duplex sequencing
.
Nat Protoc
.
2014
;
9
(
11
):
2586
-
2606
.
58.
Ip
BBK
,
Wong
ATC
,
Law
JHY
, et al
.
Application of droplet digital PCR in minimal residual disease monitoring of rare fusion transcripts and mutations in haematological malignancies
.
Sci Rep
.
2024
;
14
(
1
):
6400
.
59.
Salk
JJ
,
Schmitt
MW
,
Loeb
LA
.
Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations
.
Nat Rev Genet
.
2018
;
19
(
5
):
269
-
285
.
60.
Schmitt
MW
,
Kennedy
SR
,
Salk
JJ
,
Fox
EJ
,
Hiatt
JB
,
Loeb
LA
.
Detection of ultra-rare mutations by next-generation sequencing
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
36
):
14508
-
14513
.
61.
Abascal
F
,
Harvey
LMR
,
Mitchell
E
, et al
.
Somatic mutation landscapes at single-molecule resolution
.
Nature
.
2021
;
593
(
7859
):
405
-
410
.
62.
Dentro
SC
,
Leshchiner
I
,
Haase
K
, et al
.
Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes
.
Cell
.
2021
;
184
(
8
):
2239
-
2254.e39
.
63.
Dremsek
P
,
Schwarz
T
,
Weil
B
,
Malashka
A
,
Laccone
F
,
Neesen
J
.
Optical genome mapping in routine human genetic diagnostics-its advantages and limitations
.
Genes
.
2021
;
12
(
12
):
1958
.
64.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature
.
2018
;
561
(
7724
):
473
-
478
.
65.
Osorio
FG
,
Rosendahl Huber
A
,
Oka
R
, et al
.
Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis
.
Cell Rep
.
2018
;
25
(
9
):
2308
-
2316.e4
.
66.
Welch
JS
,
Ley
TJ
,
Link
DC
, et al
.
The origin and evolution of mutations in acute myeloid leukemia
.
Cell
.
2012
;
150
(
2
):
264
-
278
.
67.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
68.
Williams
N
,
Lee
J
,
Mitchell
E
, et al
.
Life histories of myeloproliferative neoplasms inferred from phylogenies
.
Nature
.
2022
;
602
(
7895
):
162
-
168
.
69.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
70.
Spencer Chapman
M
,
Cull
AH
,
Ciuculescu
MF
, et al
.
Clonal selection of hematopoietic stem cells after gene therapy for sickle cell disease
.
Nat Med
.
2023
;
29
(
12
):
3175
-
3183
.
71.
Lee-Six
H
,
Kent
DG
.
Tracking hematopoietic stem cells and their progeny using whole-genome sequencing
.
Exp Hematol
.
2020
;
83
:
12
-
24
.
72.
Miller
TE
,
Lareau
CA
,
Verga
JA
, et al
.
Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations
.
Nat Biotechnol
.
2022
;
40
(
7
):
1030
-
1034
.
73.
Hård
J
,
Mold
JE
,
Eisfeldt
J
, et al
.
Long-read whole-genome analysis of human single cells
.
Nat Commun
.
2023
;
14
(
1
):
5164
.
74.
Gawad
C
,
Koh
W
,
Quake
SR
.
Single-cell genome sequencing: current state of the science
.
Nat Rev Genet
.
2016
;
17
(
3
):
175
-
188
.
75.
Lindsley
RC
,
Saber
W
,
Mar
BG
, et al
.
Prognostic mutations in Myelodysplastic syndrome after stem-cell transplantation
.
N Engl J Med
.
2017
;
376
(
6
):
536
-
547
.
76.
Jansko-Gadermeir
B
,
Leisch
M
,
Gassner
FJ
, et al
.
Myeloid NGS analyses of paired samples from bone marrow and peripheral blood yield concordant results: a prospective cohort analysis of the AGMT study group
.
Cancers
.
2023
;
15
(
8
):
2305
.
77.
Beck
DB
,
Ferrada
MA
,
Sikora
KA
, et al
.
Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease
.
N Engl J Med
.
2020
;
383
(
27
):
2628
-
2638
.
78.
Cesaro
S
,
Pillon
M
,
Sauer
M
, et al
.
Long-term outcome after allogeneic hematopoietic stem cell transplantation for Shwachman–Diamond syndrome: a retrospective analysis and a review of the literature by the Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation (SAAWP-EBMT)
.
Bone Marrow Transplant
.
2020
;
55
(
9
):
1796
-
1809
.
79.
Myers
K
,
Hebert
K
,
Antin
J
, et al
.
Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome
.
Biol Blood Marrow Transplant
.
2020
;
26
(
8
):
1446
-
1451
.
You do not currently have access to this content.
Sign in via your Institution