• Our study discovered new regulators of ruxolitinib response in Ph-like ALL, including c-MYC as a therapeutically targetable codependency.

  • A prognostic senescent stem/progenitor–like subpopulation in Ph-like ALL is regulated by AP-1 and can be eradicated by senolytic drugs.

Abstract

Philadelphia chromosome–like B-cell acute lymphoblastic leukemia (Ph-like ALL) is driven by genetic alterations that induce constitutive kinase signaling and is associated with chemoresistance and high relapse risk in children and adults. Preclinical studies in the most common CRLF2-rearranged/JAK pathway-activated Ph-like ALL subtype have revealed variable responses to JAK inhibitor-based therapies, suggesting incomplete oncogene addiction and highlighting a need to elucidate alternative biologic dependencies and therapeutic vulnerabilities, whereas the ABL-class Ph-like ALL subtype seems preferentially sensitive to SRC/ABL- or PDGFRB-targeting inhibitors. Which patients may be responsive vs resistant to tyrosine kinase inhibitor (TKI)–based precision medicine approaches remains a critical knowledge gap. Using bulk and single-cell multiomics analyses, we profiled residual cells from CRLF2-rearranged or ABL1-rearranged Ph-like ALL patient–derived xenograft models treated in vivo with targeted inhibitors to identify TKI-resistant subpopulations and potential mechanisms of therapeutic escape. We detected a specific MYC dependency in Ph-like ALL cells and defined a new leukemia cell subpopulation with senescence-associated stem cell-like features regulated by AP-1 transcription factors. This dormant ALL subpopulation was effectively eradicated by dual pharmacologic inhibition of BCL-2 and JAK/STAT or SRC/ABL pathways, a clinically relevant therapeutic strategy. Single cell–derived molecular signatures of this senescence and stem/progenitor-like subpopulation further predicted poor clinical outcomes associated with other high-risk genetic subtypes of childhood B-ALL and thus may have broader prognostic applicability beyond Ph-like ALL.

1.
Wang
L
,
Bernards
R
.
Taking advantage of drug resistance, a new approach in the war on cancer
.
Front Med
.
2018
;
12
(
4
):
490
-
495
.
2.
Hurtz
C
,
Wertheim
GB
,
Loftus
JP
, et al
.
Oncogene-independent BCR-like signaling adaptation confers drug resistance in Ph-like ALL
.
J Clin Invest
.
2020
;
130
(
7
):
3637
-
3653
.
3.
Chisholm
RH
,
Lorenzi
T
,
Lorz
A
, et al
.
Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation
.
Cancer Res
.
2015
;
75
(
6
):
930
-
939
.
4.
Rosenzweig
SA
.
Acquired resistance to drugs targeting tyrosine kinases
.
Adv Cancer Res
.
2018
;
138
:
71
-
98
.
5.
Lovly
CM
,
Shaw
AT
.
Molecular pathways: resistance to kinase inhibitors and implications for therapeutic strategies
.
Clin Cancer Res
.
2014
;
20
(
9
):
2249
-
2256
.
6.
Reshmi
SC
,
Harvey
RC
,
Roberts
KG
, et al
.
Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group
.
Blood
.
2017
;
129
(
25
):
3352
-
3361
.
7.
Tasian
SK
,
Loh
ML
,
Hunger
SP
.
Philadelphia chromosome-like acute lymphoblastic leukemia
.
Blood
.
2017
;
130
(
19
):
2064
-
2072
.
8.
Roberts
KG
,
Li
Y
,
Payne-Turner
D
, et al
.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia
.
N Engl J Med
.
2014
;
371
(
11
):
1005
-
1015
.
9.
den Boer
ML
,
Cario
G
,
Moorman
AV
, et al
.
Outcomes of paediatric patients with B-cell acute lymphocytic leukaemia with ABL-class fusion in the pre-tyrosine-kinase inhibitor era: a multicentre, retrospective, cohort study
.
Lancet Haematol
.
2021
;
8
(
1
):
e55
-
e66
.
10.
Tran
TH
,
Tasian
SK
.
How I treat Philadelphia chromosome-like acute lymphoblastic leukemia in children, adolescents, and young adults
.
Blood
.
2025
;
145
(
1
):
20
-
34
.
11.
Harvey
RC
,
Tasian
SK
.
Clinical diagnostics and treatment strategies for Philadelphia chromosome-like acute lymphoblastic leukemia
.
Blood Adv
.
2020
;
4
(
1
):
218
-
228
.
12.
Weston
BW
,
Hayden
MA
,
Roberts
KG
, et al
.
Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia
.
J Clin Oncol
.
2013
;
31
(
25
):
e413
-
e416
.
13.
Salzer
WL
,
Burke
MJ
,
Devidas
M
, et al
.
Feasibility and outcome of post-induction therapy incorporating dasatinib for patients with newly diagnosed ABL-class fusion B-lymphoblastic leukemia (ABL-class fusion B-ALL): Children’s Oncology Group AALL1131 [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
961
.
14.
Cario
G
,
Leoni
V
,
Conter
V
, et al
.
Relapses and treatment-related events contributed equally to poor prognosis in children with ABL-class fusion positive B-cell acute lymphoblastic leukemia treated according to AIEOP-BFM protocols
.
Haematologica
.
2020
;
105
(
7
):
1887
-
1894
.
15.
Lunghi
M
,
Kaiser
F
,
Cardinali
D
, et al
.
Use of ponatinib alone or combined with other therapies in relapsed/refractory Ph-like acute lymphoblastic leukemia. a CAMPUS ALL real-life study [abstract]
.
Blood
.
2023
;
142
(
suppl 1
):
1507
.
16.
Loh
ML
,
Tasian
SK
,
Rabin
KR
, et al
.
A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a Children’s Oncology Group phase 1 consortium study (ADVL1011)
.
Pediatr Blood Cancer
.
2015
;
62
(
10
):
1717
-
1724
.
17.
Tasian
SK
,
Assad
A
,
Hunter
DS
,
Du
Y
,
Loh
ML
.
A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the part 1 safety phase [abstract]
.
Blood
.
2018
;
132
(
suppl 1
):
555
.
18.
Tasian
SK
,
Doral
MY
,
Borowitz
MJ
, et al
.
Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia
.
Blood
.
2012
;
120
(
4
):
833
-
842
.
19.
Maude
SL
,
Tasian
SK
,
Vincent
T
, et al
.
Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia
.
Blood
.
2012
;
120
(
17
):
3510
-
3518
.
20.
Tasian
SK
,
Teachey
DT
,
Li
Y
, et al
.
Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia
.
Blood
.
2017
;
129
(
2
):
177
-
187
.
21.
Zhang
Q
,
Shi
C
,
Han
L
, et al
.
Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia
.
Oncotarget
.
2018
;
9
(
8
):
8027
-
8041
.
22.
Bӧhm
JW
,
Sia
KCS
,
Jones
C
, et al
.
Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia
.
Leukemia
.
2021
;
35
(
11
):
3101
-
3112
.
23.
Ding
Y-Y
,
Kim
H
,
Madden
K
, et al
.
Network analysis reveals synergistic genetic dependencies for rational combination therapy in Philadelphia chromosome-like acute lymphoblastic leukemia
.
Clin Cancer Res
.
2021
;
27
(
18
):
5109
-
5122
.
24.
Sasaki
K
,
Yamauchi
T
,
Semba
Y
, et al
.
Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for CRLF2-rearranged Ph-like ALL
.
Blood
.
2022
;
139
(
5
):
748
-
760
.
25.
Lee
MJ
,
Ye
AS
,
Gardino
AK
, et al
.
Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks
.
Cell
.
2012
;
149
(
4
):
780
-
794
.
26.
Scandura
JM
,
Roboz
GJ
,
Moh
M
, et al
.
Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML
.
Blood
.
2011
;
118
(
6
):
1472
-
1480
.
27.
Nussbaum
DP
,
Martz
CA
,
Waters
AM
, et al
.
Mediator kinase inhibition impedes transcriptional plasticity and prevents resistance to ERK/MAPK-targeted therapy in KRAS-mutant cancers
.
NPJ Precis Oncol
.
2024
;
8
:
124
. 14.
28.
Vo
T-T T
,
Lee
JS
,
Nguyen
D
, et al
.
mTORC1 inhibition induces resistance to methotrexate and 6-mercaptopurine in Ph+ and Ph-like B-ALL
.
Mol Cancer Ther
.
2017
;
16
(
9
):
1942
-
1953
.
29.
Gotesman
M
,
Vo
TTT
,
Herzog
LO
, et al
.
mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL
.
Oncotarget
.
2018
;
9
(
5
):
6562
-
6571
.
30.
Tasian
SK
,
Hurtz
C
,
Wertheim
GB
, et al
.
High incidence of Philadelphia chromosome-like acute lymphoblastic leukemia in older adults with B-ALL
.
Leukemia
.
2017
;
31
(
4
):
981
-
984
.
31.
Hao
Y
,
Hao
S
,
Andersen-Nissen
E
, et al
.
Integrated analysis of multimodal single-cell data
.
Cell
.
2021
;
184
(
13
):
3573
-
3587.e29
.
32.
Ernst
J
,
Bar-Joseph
Z
.
STEM: a tool for the analysis of short time series gene expression data
.
BMC Bioinformatics
.
2006
;
7
:
191
.
33.
Kuleshov
MV
,
Xie
Z
,
London
ABK
, et al
.
KEA3: improved kinase enrichment analysis via data integration
.
Nucleic Acids Res
.
2021
;
49
(
W1
):
W304
-
W316
.
34.
Roberts
KG
,
Morin
RD
,
Zhang
J
, et al
.
Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia
.
Cancer Cell
.
2012
;
22
(
2
):
153
-
166
.
35.
Roberts
KG
,
Yang
YL
,
Payne-Turner
D
, et al
.
Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL
.
Blood Adv
.
2017
;
1
(
20
):
1657
-
1671
.
36.
Niswander
LM
,
Loftus
JP
,
Lainey
É
, et al
.
Therapeutic potential of ruxolitinib and ponatinib in patients with EPOR-rearranged Philadelphia chromosome-like acute lymphoblastic leukemia
.
Haematologica
.
2021
;
106
(
10
):
2763
-
2767
.
37.
Tsuzuki
S
,
Yasuda
T
,
Goto
H
, et al
.
BCL6 inhibition ameliorates resistance to ruxolitinib in CRLF2-rearranged acute lymphoblastic leukemia
.
Haematologica
.
2023
;
108
(
2
):
394
-
408
.
38.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst
.
2015
;
1
(
6
):
417
-
425
.
39.
Saul
D
,
Kosinsky
RL
,
Atkinson
EJ
, et al
.
A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues
.
Nat Commun
.
2022
;
13
(
1
):
4827
.
40.
Minieri
V
,
De Dominici
M
,
Porazzi
P
, et al
.
Targeting STAT5 or STAT5-regulated pathways suppresses leukemogenesis of Ph+ acute lymphoblastic leukemia
.
Cancer Res
.
2018
;
78
(
20
):
5793
-
5807
.
41.
Horiuchi
D
,
Camarda
R
,
Zhou
AY
, et al
.
PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression
.
Nat Med
.
2016
;
22
(
11
):
1321
-
1329
.
42.
Hydbring
P
,
Bahram
F
,
Su
Y
, et al
.
Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
1
):
58
-
63
.
43.
Pinz
S
,
Unser
S
,
Rascle
A
.
Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer
.
BMC Mol Biol
.
2016
;
17
:
10
.
44.
Wang
L
,
Lankhorst
L
,
Bernards
R
.
Exploiting senescence for the treatment of cancer
.
Nat Rev Cancer
.
2022
;
22
(
6
):
340
-
355
.
45.
Han
H
,
Jain
AD
,
Truica
MI
, et al
.
Small-molecule MYC inhibitors suppress tumor growth and enhance immunotherapy
.
Cancer Cell
.
2019
;
36
(
5
):
483
-
497.e15
.
46.
Scognamiglio
R
,
Cabezas-Wallscheid
N
,
Thier
MC
, et al
.
Myc depletion induces a pluripotent dormant state mimicking diapause
.
Cell
.
2016
;
164
(
4
):
668
-
680
.
47.
Whittle
JR
,
Vaillant
F
,
Surgenor
E
, et al
.
Dual targeting of CDK4/6 and BCL2 pathways augments tumor response in estrogen receptor–positive breast cancer
.
Clin Cancer Res
.
2020
;
26
(
15
):
4120
-
4134
.
48.
Grahn
THM
,
Niroula
A
,
Végvári
Á
, et al
.
S100A6 is a critical regulator of hematopoietic stem cells
.
Leukemia
.
2020
;
34
(
12
):
3323
-
3337
.
49.
Ainciburu
M
,
Ezponda
T
,
Berastegui
N
, et al
.
Uncovering perturbations in human hematopoiesis associated with healthy aging and myeloid malignancies at single-cell resolution
.
Elife
.
2023
;
12
:
e79363
.
50.
Grigoryan
A
,
Guidi
N
,
Senger
K
, et al
.
LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells
.
Genome Biol
.
2018
;
19
(
1
):
189
.
51.
Cao
H
,
Heazlewood
SY
,
Williams
B
, et al
.
The role of CD44 in fetal and adult hematopoietic stem cell regulation
.
Haematologica
.
2016
;
101
(
1
):
26
-
37
.
52.
Lee
NYS
,
Li
M
,
Ang
KS
,
Chen
J
.
Establishing a human bone marrow single cell reference atlas to study ageing and diseases
.
Front Immunol
.
2023
;
14
:
1127879
.
53.
Li
M
,
Zhang
X
,
Ang
KS
, et al
.
DISCO: a database of Deeply Integrated human Single-Cell Omics data
.
Nucleic Acids Res
.
2022
;
50
(
D1
):
D596
-
D602
.
54.
Chen
C
,
Xu
J
,
Vincent
TL
, et al
.
Single-cell pan-cancer analysis reveals treatment resistance stem/progenitor-like subpopulation in the high-risk pediatric leukemia
.
Blood
.
2022
;
140
:
1273
-
1274
.
55.
Fridman
AL
,
Tainsky
MA
.
Critical pathways in cellular senescence and immortalization revealed by gene expression profiling
.
Oncogene
.
2008
;
27
(
46
):
5975
-
5987
.
56.
Milanovic
M
,
Fan
DNY
,
Belenki
D
, et al
.
Senescence-associated reprogramming promotes cancer stemness
.
Nature
.
2018
;
553
(
7686
):
96
-
100
.
57.
Foulkes
I
,
Sharpless
NE
.
Cancer grand challenges: embarking on a new era of discovery
.
Cancer Discov
.
2021
;
11
(
1
):
23
-
27
.
58.
Aibar
S
,
González-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods
.
2017
;
14
(
11
):
1083
-
1086
.
59.
Bravo González-Blas
C
,
De Winter
S
,
Hulselmans
G
, et al
.
SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks
.
Nat Methods
.
2023
;
20
(
9
):
1355
-
1367
.
60.
Loh
ML
,
Zhang
J
,
Harvey
RC
, et al
.
Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project
.
Blood
.
2013
;
121
(
3
):
485
-
488
.
61.
Garralda
E
,
Beaulieu
ME
,
Moreno
V
, et al
.
MYC targeting by OMO-103 in solid tumors: a phase 1 trial
.
Nat Med
.
2024
;
30
(
3
):
762
-
771
.
62.
Roderick
JE
,
Tesell
J
,
Shultz
LD
, et al
.
c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells
.
Blood
.
2014
;
123
(
7
):
1040
-
1050
.
63.
Curtiss
BM
,
VanCampen
J
,
Macaraeg
J
, et al
.
PU.1 and MYC transcriptional network defines synergistic drug responses to KIT and LSD1 inhibition in acute myeloid leukemia
.
Leukemia
.
2022
;
36
(
7
):
1781
-
1793
.
64.
Holmes
AG
,
Parker
JB
,
Sagar
V
, et al
.
A MYC inhibitor selectively alters the MYC and MAX cistromes and modulates the epigenomic landscape to regulate target gene expression
.
Sci Adv
.
2022
;
8
(
17
):
eabh3635
.
65.
Chinenov
Y
,
Coppo
M
,
Gupte
R
,
Sacta
MA
,
Rogatsky
I
.
Glucocorticoid receptor coordinates transcription factor-dominated regulatory network in macrophages
.
BMC Genomics
.
2014
;
15
(
1
):
656
.
66.
Meyer
LK
,
Delgado-Martin
C
,
Maude
SL
,
Shannon
KM
,
Teachey
DT
,
Hermiston
ML
.
CRLF2 rearrangement in Ph-like acute lymphoblastic leukemia predicts relative glucocorticoid resistance that is overcome with MEK or Akt inhibition
.
PLoS One
.
2019
;
14
(
7
):
e0220026
.
67.
Sarno
J
,
Domizi
P
,
Liu
Y
, et al
.
Dasatinib overcomes glucocorticoid resistance in B-cell acute lymphoblastic leukemia
.
Nat Commun
.
2023
;
14
(
1
):
2935
.
68.
O’Sullivan
JM
,
Taylor
J
,
Gerds
A
, et al
.
RAS-pathway mutations are common in patients with ruxolitinib refractory/intolerant myelofibrosis: molecular analysis of the PAC203 cohort
.
Leukemia
.
2023
;
37
(
12
):
2497
-
2501
.
69.
Coltro
G
,
Rotunno
G
,
Mannelli
L
, et al
.
RAS/CBL mutations predict resistance to JAK inhibitors in myelofibrosis and are associated with poor prognostic features
.
Blood Adv
.
2020
;
4
(
15
):
3677
-
3687
.
70.
Schmitt
CA
,
Wang
B
,
Demaria
M
.
Senescence and cancer—role and therapeutic opportunities
.
Nat Rev Clin Oncol
.
2022
;
19
(
10
):
619
-
636
.
71.
Afifi
MM
,
Crncec
A
,
Cornwell
JA
, et al
.
Irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation
.
Cell Rep
.
2023
;
42
(
9
):
113079
.
72.
Terzi
MY
,
Izmirli
M
,
Gogebakan
B
.
The cell fate: senescence or quiescence
.
Mol Biol Rep
.
2016
;
43
(
11
):
1213
-
1220
.
73.
Tasian
SK
,
Hunter
DS
,
Chen
IML
, et al
.
A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (AALL1521/INCB18424-269): biologic characteristics and minimal residual disease response of patients with non-CRLF2-rearranged JAK pathway alterations [abstract]
.
Blood
.
2022
;
140
(
suppl 1
):
6117
-
6118
.
74.
Comandante-Lou
N
,
Baumann
DG
,
Fallahi-Sichani
M
.
AP-1 transcription factor network explains diverse patterns of cellular plasticity in melanoma cells
.
Cell Rep
.
2022
;
40
(
5
):
111147
.
75.
Boeva
V
,
Louis-Brennetot
C
,
Peltier
A
, et al
.
Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries
.
Nat Genet
.
2017
;
49
(
9
):
1408
-
1413
.
76.
Li
Y
,
He
Y
,
Peng
J
, et al
.
Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer
.
Nat Cancer
.
2021
;
2
(
1
):
49
-
65
.
77.
Duy
C
,
Li
M
,
Teater
M
, et al
.
Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence
.
Cancer Discov
.
2021
;
11
(
6
):
1542
-
1561
.
You do not currently have access to this content.
Sign in via your Institution