• Timed PSTKi overcomes chemotherapy resistance and eradicates leukemic stem cells while preserving normal blood cell functionality.

  • The self-reinforcing PSTK-cGAS-STING-ROS loop results in oxidative crisis and ferroptosis in AML.

Abstract

Differentiation arrest and dependence on oxidative metabolism are features shared among genetically diverse acute myeloid leukemias (AMLs). A phenotypic CRISPR-CRISPR–associated protein 9 screen in AML identified dependence on phosphoseryl-transfer RNA kinase (PSTK), an atypical kinase required for the biosynthesis of all selenoproteins. In vivo, PSTK inhibition (PSTKi) impaired AML cell growth and leukemic stem cell self-renewal. Notably, timed pharmacologic PSTKi effectively targeted chemotherapy-resistant AML in murine and patient-derived xenograft models, showing selectivity for malignant cells over normal hematopoietic cells. Mechanistically, PSTKi-induced reactive oxygen species (ROS) triggering mitochondrial DNA release into the cytosol and activated cyclic GMP-AMP Synthase-Stimulator of interferon genes (cGAS-STING). This activation, in turn, disrupted iron metabolism, augmenting ROS generation, and amplifying ferroptosis. Together, these findings reveal a self-reinforcing PSTK-cGAS-STING-ROS loop, culminating in an oxidative crisis and ferroptotic cell death of leukemic stem cells. These data highlight the potential for augmenting standard cancer chemotherapies using timed metabolic intervention to eliminate chemotherapy-persisting cells and thereby impede disease relapse.

1.
Daver
N
,
Wei
AH
,
Pollyea
DA
,
Fathi
AT
,
Vyas
P
,
DiNardo
CD
.
New directions for emerging therapies in acute myeloid leukemia: the next chapter
.
Blood Cancer J
.
2020
;
10
(
10
):
107
.
2.
Schirrmacher
V
.
From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review)
.
Int J Oncol
.
2019
;
54
(
2
):
407
-
419
.
3.
Martinez-Reyes
I
,
Chandel
N S
.
Cancer metabolism: looking forward
.
Nat Rev Cancer
.
2021
;
21
(
10
):
669
-
680
.
4.
Mesbahi
Y
,
Trahair
T N
,
Lock
R B
,
Connerty
P
.
Exploring the metabolic landscape of AML: from haematopoietic stem cells to myeloblasts and leukaemic stem cells
.
Front Oncol
.
2022
;
12
:
807266
.
5.
Roberts
A W
.
Therapeutic development and current uses of BCL-2 inhibition
.
Hematology Am Soc Hematol Educ Program
.
2020
;
2020
(
1
):
1
-
9
.
6.
Roberts
A W
,
Davids
MS
,
Pagel
JM
, et al
.
Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
311
-
322
.
7.
Zhang
C
,
Liu
X
,
Jin
S
,
Chen
Y
,
Guo
R
.
Ferroptosis in cancer therapy: a novel approach to reversing drug resistance
.
Mol Cancer
.
2022
;
21
(
1
):
47
.
8.
Sun
S
,
Shen
J
,
Jiang
J
,
Wang
F
,
Min
J
.
Targeting ferroptosis opens new avenues for the development of novel therapeutics
.
Signal Transduct Targeted Ther
.
2023
;
8
(
1
):
372
.
9.
Seibt
T M
,
Proneth
B
,
Conrad
M
.
Role of GPX4 in ferroptosis and its pharmacological implication
.
Free Radic Biol Med
.
2019
;
133
:
144
-
152
.
10.
Hangauer
M J
,
Viswanathan
VS
,
Ryan
MJ
, et al
.
Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition
.
Nature
.
2017
;
551
(
7679
):
247
-
250
.
11.
Jia
D
,
Lu
M
,
Jung
KH
, et al
.
Elucidating cancer metabolic plasticity by coupling gene regulation with metabolic pathways
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
9
):
3909
-
3918
.
12.
van Gastel
N
,
Spinelli
JB
,
Sharda
A
, et al
.
Induction of a timed metabolic collapse to overcome cancer chemoresistance
.
Cell Metab
.
2020
;
32
(
3
):
391
-
403.e6
.
13.
Sykes
D B
,
Kfoury
YS
,
Mercier
FE
, et al
.
Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia
.
Cell
.
2016
;
167
(
1
):
171
-
186.e15
.
14.
Yusuf
R Z
,
Saez
B
,
Sharda
A
, et al
.
Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers
.
Blood
.
2020
;
136
(
11
):
1303
-
1316
.
15.
Wang
Y P
,
Sharda
A
,
Xu
SN
, et al
.
Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis
.
Cell Metab
.
2021
;
33
(
5
):
1027
-
1041.e8
.
16.
Kang
D
,
Lee
J
,
Wu
C
, et al
.
The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies
.
Exp Mol Med
.
2020
;
52
(
8
):
1198
-
1208
.
17.
Zhang
Y
,
Roh
YJ
,
Han
SJ
, et al
.
Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review
.
Antioxidants
.
2020
;
9
(
5
):
383
.
18.
Lu
J
,
Holmgren
A
.
Selenoproteins
.
J Biol Chem
.
2009
;
284
(
2
):
723
-
727
.
19.
Kryukov
G V
,
Castellano
S
,
Novoselov
SV
, et al
.
Characterization of mammalian selenoproteomes
.
Science
.
2003
;
300
(
5624
):
1439
-
1443
.
20.
Wunderlich
M
,
Mizukawa
B
,
Chou
FS
, et al
.
AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model
.
Blood
.
2013
;
121
(
12
):
e90
-
e97
.
21.
Howell
P M
,
Liu
Z
,
Khong
H T
.
Demethylating agents in the treatment of cancer
.
Pharmaceuticals
.
2010
;
3
(
7
):
2022
-
2044
.
22.
Dang
L
,
White
DW
,
Gross
S
, et al
.
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
.
Nature
.
2009
;
462
(
7274
):
739
-
744
.
23.
Wang
F
,
Travins
J
,
DeLaBarre
B
, et al
.
Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation
.
Science
.
2013
;
340
(
6132
):
622
-
626
.
24.
Christian
S
,
Merz
C
,
Evans
L
, et al
.
The novel dihydroorotate dehydrogenase (DHODH) inhibitor BAY 2402234 triggers differentiation and is effective in the treatment of myeloid malignancies
.
Leukemia
.
2019
;
33
(
10
):
2403
-
2415
.
25.
Fujino
T
,
Yamazaki
Y
,
Largaespada
DA
, et al
.
Inhibition of myeloid differentiation by Hoxa9, Hoxb8, and Meis homeobox genes
.
Exp Hematol
.
2001
;
29
(
7
):
856
-
863
.
26.
Wang
T
,
Yu
H
,
Hughes
NW
, et al
.
Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras
.
Cell
.
2017
;
168
(
5
):
890
-
903.e15
.
27.
Krivtsov
A V
,
Twomey
D
,
Feng
Z
, et al
.
Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9
.
Nature
.
2006
;
442
(
7104
):
818
-
822
.
28.
Han
L
,
Dong
L
,
Leung
K
, et al
.
METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism
.
Cell Stem Cell
.
2023
;
30
(
1
):
52
-
68.e13
.
29.
Chen
Y
,
Li
L
,
Lan
J
, et al
.
CRISPR screens uncover protective effect of PSTK as a regulator of chemotherapy-induced ferroptosis in hepatocellular carcinoma
.
Mol Cancer
.
2022
;
21
(
1
):
11
.
30.
Romo-Gonzalez
M
,
Ijurko
C
,
Hernandez-Hernandez
A
.
Reactive oxygen species and metabolism in leukemia: a dangerous liaison
.
Front Immunol
.
2022
;
13
:
889875
.
31.
Jonas
B A
,
Pollyea
D A
.
How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia
.
Leukemia
.
2019
;
33
(
12
):
2795
-
2804
.
32.
Wu
L
,
Zhang
Y
,
Wang
G
,
Ren
J
.
Molecular mechanisms and therapeutic targeting of ferroptosis in doxorubicin-induced cardiotoxicity
.
JACC Basic Transl Sci
.
2024
;
9
(
6
):
811
-
826
.
33.
Liou
G Y
,
Storz
P
.
Reactive oxygen species in cancer
.
Free Radic Res
.
2010
;
44
(
5
):
479
-
496
.
34.
Seiler
A
,
Schneider
M
,
Förster
H
, et al
.
Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death
.
Cell Metab
.
2008
;
8
(
3
):
237
-
248
.
35.
Dou
Z
,
Ghosh
K
,
Vizioli
MG
, et al
.
Cytoplasmic chromatin triggers inflammation in senescence and cancer
.
Nature
.
2017
;
550
(
7676
):
402
-
406
.
36.
Cai
X
,
Chiu
Y H
,
Chen
Z J
.
The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
.
Mol Cell
.
2014
;
54
(
2
):
289
-
296
.
37.
Mancias
J D
,
Wang
X
,
Gygi
S P
,
Harper
J W
,
Kimmelman
A C
.
Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
.
Nature
.
2014
;
509
(
7498
):
105
-
109
.
38.
Jin
L
,
Yu
B
,
Wang
H
, et al
.
STING promotes ferroptosis through NCOA4-dependent ferritinophagy in acute kidney injury
.
Free Radic Biol Med
.
2023
;
208
:
348
-
360
.
39.
Wu
J
,
Liu
Q
,
Zhang
X
, et al
.
The interaction between STING and NCOA4 exacerbates lethal sepsis by orchestrating ferroptosis and inflammatory responses in macrophages
.
Cell Death Dis
.
2022
;
13
(
7
):
653
.
40.
Wu
Y
,
Zhang
S
,
Gong
X
, et al
.
The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression
.
Mol Cancer
.
2020
;
19
(
1
):
39
.
41.
Li
B
,
Wang
W
,
Li
Y
, et al
.
cGAS-STING pathway aggravates early cerebral ischemia-reperfusion injury in mice by activating NCOA4-mediated ferritinophagy
.
Exp Neurol
.
2023
;
359
:
114269
.
42.
Diepstraten
S T
,
Yuan
Y
,
La Marca
JE
, et al
.
Putting the STING back into BH3-mimetic drugs for TP53-mutant blood cancers
.
Cancer Cell
.
2024
;
42
(
5
):
850
-
868.e9
.
43.
Woo
S R
,
Fuertes
MB
,
Corrales
L
, et al
.
STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors
.
Immunity
.
2014
;
41
(
5
):
830
-
842
.
44.
Li
J
,
Liu
J
,
Zhou
Z
, et al
.
Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer
.
Sci Transl Med
.
2023
;
15
(
720
):
eadg3049
.
45.
Eagle
K
,
Jiang
Y
,
Shi
X
, et al
.
An oncogenic enhancer encodes selective selenium dependency in AML
.
Cell Stem Cell
.
2022
;
29
(
4
):
650
.
46.
Carlisle
A E
,
Lee
N
,
Matthew-Onabanjo
AN
, et al
.
Selenium detoxification is required for cancer-cell survival
.
Nat Metab
.
2020
;
2
(
7
):
603
-
611
.
You do not currently have access to this content.
Sign in via your Institution