• Low-frequency JAK2V617F clone drives MPN-like disease in unconditioned BMT recipients.

  • Transplanted JAK2V617F clones profoundly affect nonmutated hematopoietic and stromal bystander cells.

Abstract

JAK2V617F is one of the most common mutations in clonal hematopoiesis of indeterminate potential (CHIP) and a major driver of myeloproliferative neoplasms (MPNs). To determine the impact of a low-frequency JAK2V617F clone on both the hematopoietic system and the bone marrow (BM) stroma, we developed a traceable murine MPN model, in which whole BM transplantation (BMT) was performed using CD45.2 5.0 × 106 JAK2V617F donor cells transplanted into unconditioned CD45.1 recipient mice. BMT recipients developed a polycythemia vera–like phenotype (elevated hematocrit and leukocytosis) with a 2.7% average donor cell chimerism in peripheral blood. Eight months after BMT, RNA sequencing (RNA-seq) analysis of BM cells sorted according to CD45.1/CD45.2 expression showed significant upregulation of early erythroblast- and myeloid cell–specific transcripts, and downregulation of lymphoid transcripts in donor-derived cells compared to controls. Surprisingly, recipient-derived cells also showed upregulation of myeloid- and erythroblast-related transcripts, indicating a skewing of the non–JAK2V617F-carrying recipient hematopoietic system toward an MPN-like phenotype. In addition, RNA-seq analysis of the BM stroma from JAK2V617F BMT recipients indicated significant loss of osteomesenchymal transcripts. Consistently, micro–computed tomography imaging indicated loss of trabecular bone. In sum, our results indicate that low-frequency MPN-driving cells in unconditioned recipients not only impact hematopoiesis-supporting stroma but also profoundly influence unmutated cells, uniquely altering their transcriptomic and phenotypic profiles. These observations are challenging our current understanding of the etiology and therapeutic approaches to MPNs and other CHIP-associated diseases.

1.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet
.
2005
;
365
(
9464
):
1054
-
1061
.
2.
James
C
,
Ugo
V
,
Le Couédic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature
.
2005
;
434
(
7037
):
1144
-
1148
.
3.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med
.
2005
;
352
(
17
):
1779
-
1790
.
4.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell
.
2005
;
7
(
4
):
387
-
397
.
5.
Goldman
EA
,
Spellman
PT
,
Agarwal
A
.
Defining clonal hematopoiesis of indeterminate potential: evolutionary dynamics and detection under aging and inflammation
.
Cold Spring Harb Mol Case Stud
.
2023
;
9
(
2
):
a006251
.
6.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
7.
Cordua
S
,
Kjaer
L
,
Skov
V
,
Pallisgaard
N
,
Hasselbalch
HC
,
Ellervik
C
.
Prevalence and phenotypes of JAK2 V617F and calreticulin mutations in a Danish general population
.
Blood
.
2019
;
134
(
5
):
469
-
479
.
8.
Nielsen
C
,
Birgens
HS
,
Nordestgaard
BG
,
Bojesen
SE
.
Diagnostic value of JAK2 V617F somatic mutation for myeloproliferative cancer in 49 488 individuals from the general population
.
Br J Haematol
.
2013
;
160
(
1
):
70
-
79
.
9.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
10.
McKerrell
T
,
Park
N
,
Moreno
T
, et al
.
Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis
.
Cell Rep
.
2015
;
10
(
8
):
1239
-
1245
.
11.
Xu
X
,
Zhang
Q
,
Luo
J
, et al
.
JAK2V617F: prevalence in a large Chinese hospital population
.
Blood
.
2006
;
109
(
1
):
339
-
342
.
12.
Nielsen
C
,
Bojesen
SE
,
Nordestgaard
BG
,
Kofoed
KF
,
Birgens
HS
.
JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate
.
Haematologica
.
2014
;
99
(
9
):
1448
-
1455
.
13.
Luque Paz
D
,
Kralovics
R
,
Skoda
RC
.
Genetic basis and molecular profiling in myeloproliferative neoplasms
.
Blood
.
2023
;
141
(
16
):
1909
-
1921
.
14.
Marshall
CH
,
Gondek
LP
,
Luo
J
,
Antonarakis
ES
.
Clonal hematopoiesis of indeterminate potential in patients with solid tumor malignancies
.
Cancer Res
.
2022
;
82
(
22
):
4107
-
4113
.
15.
Gerds
AT
,
Gotlib
J
,
Ali
H
, et al
.
Myeloproliferative neoplasms, version 3.2022, NCCN Clinical Practice Guidelines in Oncology
.
J Natl Compr Canc Netw
.
2022
;
20
(
9
):
1033
-
1062
.
16.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
17.
McKerrell
T
,
Park
N
,
Chi
J
, et al
.
JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics
.
Blood Adv
.
2017
;
1
(
14
):
968
-
971
.
18.
Van Egeren
D
,
Escabi
J
,
Nguyen
M
, et al
.
Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
.
Cell Stem Cell
.
2021
;
28
(
3
):
514
-
523.e9
.
19.
Williams
N
,
Lee
J
,
Mitchell
E
, et al
.
Life histories of myeloproliferative neoplasms inferred from phylogenies
.
Nature
.
2022
;
602
(
7895
):
162
-
168
.
20.
Galán-Díez
M
,
Cuesta-Domínguez
Á
,
Kousteni
S
.
The bone marrow microenvironment in health and myeloid malignancy
.
Cold Spring Harb Perspect Med
.
2018
;
8
(
7
):
a031328
.
21.
Baryawno
N
,
Przybylski
D
,
Kowalczyk
MS
, et al
.
A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia
.
Cell
.
2019
;
177
(
7
):
1915
-
1932.e6
.
22.
Dolgalev
I
,
Tikhonova
AN
.
Connecting the dots: resolving the bone marrow niche heterogeneity
.
Front Cell Dev Biol
.
2021
;
9
(
478
):
622519
.
23.
Thapa
B
,
Fazal
S
,
Parsi
M
,
Rogers
HJ
.
Myeloproliferative Neoplasms In: StatPearls Publishing LLC [Internet]
. Accessed 2024. https://www.ncbi.nlm.nih.gov/books/NBK531464/.
24.
Mendez
Luque LF
,
Blackmon
AL
,
Ramanathan
G
,
Fleischman
AG
.
Key role of inflammation in myeloproliferative neoplasms: instigator of disease initiation, progression and symptoms
.
Curr Hematologic Malignancy Rep
.
2019
;
14
(
3
):
145
-
153
.
25.
Hermouet
S
.
Mutations, inflammation and phenotype of myeloproliferative neoplasms
.
Front Oncol
.
2023
;
13
:
1196817
.
26.
Adamson
JW
,
Fialkow
PJ
,
Murphy
S
,
Prchal
JF
,
Steinmann
L
.
Polycythemia vera: stem-cell and probable clonal origin of the disease
.
N Engl J Med
.
1976
;
295
(
17
):
913
-
916
.
27.
O'Sullivan
JM
,
Mead
AJ
,
Psaila
B
.
Single-cell methods in myeloproliferative neoplasms: old questions, new technologies
.
Blood
.
2023
;
141
(
4
):
380
-
390
.
28.
Nangalia
J
,
Green
AR
.
Myeloproliferative neoplasms: from origins to outcomes
.
Blood
.
2017
;
130
(
23
):
2475
-
2483
.
29.
Hoermann
G
,
Greiner
G
,
Valent
P
.
Cytokine regulation of microenvironmental cells in myeloproliferative neoplasms
.
Mediators Inflamm
.
2015
;
2015
:
869242
.
30.
Ramos
TL
,
Sánchez-Abarca
LI
,
Rosón-Burgo
B
, et al
.
Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis
.
PLoS One
.
2017
;
12
(
8
):
e0182470
.
31.
Fracchiolla
NS
,
Fattizzo
B
,
Cortelezzi
A
.
Mesenchymal stem cells in myeloid malignancies: a focus on immune escaping and therapeutic implications
.
Stem Cells Int
.
2017
;
2017
:
6720594
.
32.
Duncombe
AS
,
Anderson
LA
,
James
G
, et al
.
Modifiable lifestyle and medical risk factors associated with myeloproliferative neoplasms
.
Hemasphere
.
2020
;
4
(
1
):
e327
.
33.
Leiba
A
,
Duek
A
,
Afek
A
,
Derazne
E
,
Leiba
M
.
Obesity and related risk of myeloproliferative neoplasms among Israeli adolescents
.
Obesity (Silver Spring)
.
2017
;
25
(
7
):
1187
-
1190
.
34.
Sigurdur
YK
,
Ola
L
,
Jan
S
,
Magnus
B
,
Lynn
RG
.
Autoimmunity and the risk of myeloproliferative neoplasms
.
Haematologica
.
2010
;
95
(
7
):
1216
-
1220
.
35.
Anderson
LA
,
Pfeiffer
RM
,
Landgren
O
,
Gadalla
S
,
Berndt
SI
,
Engels
EA
.
Risks of myeloid malignancies in patients with autoimmune conditions
.
Br J Cancer
.
2009
;
100
(
5
):
822
-
828
.
36.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
37.
Kühn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K
.
Inducible gene targeting in mice
.
Science
.
1995
;
269
(
5229
):
1427
-
1429
.
38.
Wang
Y
,
Sano
S
,
Yura
Y
, et al
.
Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction
.
JCI Insight
.
2024
;
5
(
6
):
e135204
.
39.
Chorzalska
A
,
Morgan
J
,
Ahsan
N
, et al
.
Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis
.
Blood
.
2018
;
132
(
19
):
2053
-
2066
.
40.
Shen
FW
,
Saga
Y
,
Litman
G
, et al
.
Cloning of Ly-5 cDNA
.
Proc Natl Acad Sci U S A
.
1985
;
82
(
21
):
7360
-
7363
.
41.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
42.
R Core Team
.
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing
. Accessed 2024. https://www.R-project.org/.
43.
Velasco-Hernandez
T
,
Säwén
P
,
Bryder
D
,
Cammenga
J
.
Potential pitfalls of the Mx1-Cre system: implications for experimental modeling of normal and malignant hematopoiesis
.
Stem Cell Rep
.
2016
;
7
(
1
):
11
-
18
.
44.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell
.
2010
;
17
(
6
):
584
-
596
.
45.
Wernig
G
,
Mercher
T
,
Okabe
R
,
Levine
RL
,
Lee
BH
,
Gilliland
DG
.
Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model
.
Blood
.
2006
;
107
(
11
):
4274
-
4281
.
46.
Li
J
,
Kent
DG
,
Godfrey
AL
, et al
.
JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease
.
Blood
.
2014
;
123
(
20
):
3139
-
3151
.
47.
Zaleskas
VM
,
Krause
DS
,
Lazarides
K
, et al
.
Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F
.
PLoS One
.
2006
;
1
(
1
):
e18
.
48.
Hay
SB
,
Ferchen
K
,
Chetal
K
,
Grimes
HL
,
Salomonis
N
.
The Human Cell Atlas bone marrow single-cell interactive web portal
.
Exp Hematol
.
2018
;
68
:
51
-
61
.
49.
Newman
AM
,
Steen
CB
,
Liu
CL
, et al
.
Determining cell type abundance and expression from bulk tissues with digital cytometry
.
Nat Biotechnol
.
2019
;
37
(
7
):
773
-
782
.
50.
Bandyopadhyay
S
,
Duffy
MP
,
Ahn
KJ
, et al
.
Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging
.
Cell
.
2024
;
187
(
12
):
3120
-
3140.e9
.
51.
Li
J
,
Spensberger
D
,
Ahn
JS
, et al
.
JAK2 V617F impairs hematopoietic stem cell function in a conditional knock-in mouse model of JAK2 V617F-positive essential thrombocythemia
.
Blood
.
2010
;
116
(
9
):
1528
-
1538
.
52.
Cao
J
,
Spielmann
M
,
Qiu
X
, et al
.
The single-cell transcriptional landscape of mammalian organogenesis
.
Nature
.
2019
;
566
(
7745
):
496
-
502
.
53.
Stephens
M
.
False discovery rates: a new deal
.
Biostatistics
.
2016
;
18
(
2
):
275
-
294
.
54.
Cordua
S
,
Kjaer
L
,
Skov
V
, et al
.
Early detection of myeloproliferative neoplasms in a Danish general population study
.
Leukemia
.
2021
;
35
(
9
):
2706
-
2709
.
55.
Ramanathan
G
,
Hoover
BM
,
Fleischman
AG
.
Impact of host, lifestyle and environmental factors in the pathogenesis of MPN
.
Cancers
.
2020
;
12
(
8
):
2038
.
56.
Catani
L
,
Cavo
M
,
Palandri
F
.
The power of extracellular vesicles in myeloproliferative neoplasms: “crafting” a microenvironment that matters
.
Cells
.
2021
;
10
(
9
):
2316
.
57.
Morales
ML
,
Ferrer-Marín
F
.
Deepening our understanding of the factors affecting landscape of myeloproliferative neoplasms: what do we know about them?
.
Cancers (Basel)
.
2023
;
15
(
4
):
1348
.
58.
Kim
MJ
,
Valderrábano
RJ
,
Wu
JY
.
Osteoblast lineage support of hematopoiesis in health and disease
.
Journal of Bone and Mineral Research
.
2022
;
37
(
10
):
1823
-
1842
.
59.
Tratwal
J
,
Rojas-Sutterlin
S
,
Bataclan
C
,
Blum
S
,
Naveiras
O
.
Bone marrow adiposity and the hematopoietic niche: a historical perspective of reciprocity, heterogeneity, and lineage commitment
.
Best Pract Res Clin Endocrinol Metab
.
2021
;
35
(
4
):
101564
.
60.
Hofmann
J
,
Kokkaliaris
KD
.
Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress
.
Blood
.
2024
;
144
(
1
):
21
-
34
.
61.
Wang
L
,
Zhang
H
,
Rodriguez
S
, et al
.
Notch-dependent repression of miR-155 in the bone marrow niche regulates hematopoiesis in an NF-κB-dependent manner
.
Cell Stem Cell
.
2014
;
15
(
1
):
51
-
65
.
62.
Banjanin
B
,
Schneider
RK
.
Mesenchymal stromal cells as a cellular target in myeloid malignancy: chances and challenges in the genome editing of stromal alterations
.
Front Genome
.
2020
;
2
:
618308
.
63.
Kim
YW
,
Koo
BK
,
Jeong
HW
, et al
.
Defective Notch activation in microenvironment leads to myeloproliferative disease
.
Blood
.
2008
;
112
(
12
):
4628
-
4638
.
64.
Kremer
KN
,
Dudakovic
A
,
McGee-Lawrence
ME
, et al
.
Osteoblasts protect AML cells from SDF-1-induced apoptosis
.
J Cell Biochem
.
2014
;
115
(
6
):
1128
-
1137
.
65.
Böttcher
M
,
Panagiotidis
K
,
Bruns
H
, et al
.
Bone marrow stroma cells promote induction of a chemoresistant and prognostic unfavorable S100A8/A9high AML cell subset
.
Blood Adv
.
2022
;
6
(
21
):
5685
-
5697
.
66.
Schepers
K
,
Pietras
EM
,
Reynaud
D
, et al
.
Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche
.
Cell Stem Cell
.
2013
;
13
(
3
):
285
-
299
.
67.
Battula
VL
,
Le
PM
,
Sun
JC
, et al
.
AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth
.
JCI Insight
.
2017
;
2
(
13
):
e90036
.
68.
Johansson
P
,
Kristjansdottir
HL
,
Johansson
H
,
Jakir
A
,
Mellström
D
,
Lewerin
C
.
Highly increased risk of fracture in patients with myeloproliferative neoplasm
.
Leuk Lymphoma
.
2021
;
62
(
1
):
211
-
217
.
69.
Sousos
N
,
Ní Leathlobhair
M
,
Simoglou Karali
C
, et al
.
In utero origin of myelofibrosis presenting in adult monozygotic twins
.
Nat Med
.
2022
;
28
(
6
):
1207
-
1211
.
You do not currently have access to this content.
Sign in via your Institution