• CUX1 knockdown restores and extends HSC activity in early hematopoietic progenitors.

  • CUX1 loss ignites an antiviral response because of the reexpression of retroelements, leading to increased self-renewal.

Abstract

Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial for development and frequently deleted in myeloid neoplasia in the context of –7/(del7q). Here, using novel mouse models and single-cell approaches, we report that dynamic and distinct CUX1 levels are integral to hematopoietic stem cell (HSC) activity. Knockdown of CUX1 reverses HSC differentiation and strikingly reendows progenitors with stem cell function, accompanied by restoration of the HSC transcriptome and DNA accessibility landscape. CUX1 mediates these activities, in part, via suppressing endogenous retroelements (EREs) and the ensuing interferon-stimulated gene expression program. Both EREs and the interferon response are upregulated in CUX1-deficient acute myeloid leukemia, suggesting a conserved role of CUX1 in regulating these elements. These data establish an unexpected entwinement between stem cell–intrinsic innate immune activation and the transcriptional programs of stem cell identity. Furthermore, we reveal the profound effects of transcription factor levels in cell fate.

1.
Wilkinson
AC
,
Igarashi
KJ
,
Nakauchi
H
.
Haematopoietic stem cell self-renewal in vivo and ex vivo
.
Nat Rev Genet
.
2020
;
21
(
9
):
541
-
554
.
2.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
3.
Liggett
LA
,
Sankaran
VG
.
Unraveling hematopoiesis through the lens of genomics
.
Cell
.
2020
;
182
(
6
):
1384
-
1400
.
4.
Laurenti
E
,
Göttgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
5.
Giladi
A
,
Paul
F
,
Herzog
Y
, et al
.
Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis
.
Nat Cell Biol
.
2018
;
20
(
7
):
836
-
846
.
6.
Bowling
S
,
Sritharan
D
,
Osorio
FG
, et al
.
An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells
.
Cell
.
2020
;
181
(
6
):
1410
-
1422.e27
.
7.
Pei
W
,
Shang
F
,
Wang
X
, et al
.
Resolving fates and single-cell transcriptomes of hematopoietic stem cell clones by polylox express barcoding
.
Cell Stem Cell
.
2020
;
27
(
3
):
383
-
395.e8
.
8.
Rodriguez-Fraticelli
AE
,
Wolock
SL
,
Weinreb
CS
, et al
.
Clonal analysis of lineage fate in native haematopoiesis
.
Nature
.
2018
;
553
(
7687
):
212
-
216
.
9.
Carrelha
J
,
Meng
Y
,
Kettyle
LM
, et al
.
Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells
.
Nature
.
2018
;
554
(
7690
):
106
-
111
.
10.
Morita
Y
,
Ema
H
,
Nakauchi
H
.
Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
.
J Exp Med
.
2010
;
207
(
6
):
1173
-
1182
.
11.
Sanjuan-Pla
A
,
Macaulay
IC
,
Jensen
CT
, et al
.
Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy
.
Nature
.
2013
;
502
(
7470
):
232
-
236
.
12.
Yamamoto
R
,
Morita
Y
,
Ooehara
J
, et al
.
Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
.
Cell
.
2013
;
154
(
5
):
1112
-
1126
.
13.
Weinreb
C
,
Rodriguez-Fraticelli
A
,
Camargo
FD
,
Klein
AM
.
Lineage tracing on transcriptional landscapes links state to fate during differentiation
.
Science
.
2020
;
367
(
6479
):
eaaw3381
.
14.
Naik
SH
,
Perié
L
,
Swart
E
, et al
.
Diverse and heritable lineage imprinting of early haematopoietic progenitors
.
Nature
.
2013
;
496
(
7444
):
229
-
232
.
15.
Kucinski
I
,
Campos
J
,
Barile
M
, et al
.
A time- and single-cell-resolved model of murine bone marrow hematopoiesis
.
Cell Stem Cell
.
2024
;
31
(
2
):
244
-
259.e10
.
16.
Schönberger
K
,
Obier
N
,
Romero-Mulero
MC
, et al
.
Multilayer omics analysis reveals a non-classical retinoic acid signaling axis that regulates hematopoietic stem cell identity
.
Cell Stem Cell
.
2022
;
29
(
1
):
131
-
148.e10
.
17.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823.e19
.
18.
Comazzetto
S
,
Cassidy
DL
,
DeVilbiss
AW
, et al
.
Ascorbate deficiency increases quiescence and self–renewal in hematopoietic stem cells and multipotent progenitors
.
Blood
.
2025
;
145
(
1
):
114
-
126
.
19.
Kataoka
K
,
Sato
T
,
Yoshimi
A
, et al
.
Evi1 is essential for hematopoietic stem cell self-renewal, and its expression marks hematopoietic cells with long-term multilineage repopulating activity
.
J Exp Med
.
2011
;
208
(
12
):
2403
-
2416
.
20.
Voit
RA
,
Tao
L
,
Yu
F
, et al
.
A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia
.
Nat Immunol
.
2023
;
24
(
1
):
69
-
83
.
21.
Zeng
H
,
Yücel
R
,
Kosan
C
,
Klein-Hitpass
L
,
Möröy
T
.
Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells
.
EMBO J
.
2004
;
23
(
20
):
4116
-
4125
.
22.
Komorowska
K
,
Doyle
A
,
Wahlestedt
M
, et al
.
Hepatic leukemia factor maintains quiescence of hematopoietic stem cells and protects the stem cell pool during regeneration
.
Cell Rep
.
2017
;
21
(
12
):
3514
-
3523
.
23.
Wilkinson
AC
,
Göttgens
B
. Transcriptional regulation of haematopoietic stem cells.
Transcriptional and Translational Regulation of Stem Cells
.
Springer
;
2013
:
187
-
212
.
24.
Bogeska
R
,
Mikecin
A-M
,
Kaschutnig
P
, et al
.
Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging
.
Cell Stem Cell
.
2022
;
29
(
8
):
1273
-
1284.e8
.
25.
Baldridge
MT
,
King
KY
,
Boles
NC
,
Weksberg
DC
,
Goodell
MA
.
Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection
.
Nature
.
2010
;
465
(
7299
):
793
-
797
.
26.
Hormaechea-Agulla
D
,
Matatall
KA
,
Le
DT
, et al
.
Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling
.
Cell Stem Cell
.
2021
;
28
(
8
):
1428
-
1442.e6
.
27.
Chen
J
,
Feng
X
,
Desierto
MJ
,
Keyvanfar
K
,
Young
NS
.
IFN-γ-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure
.
Blood
.
2015
;
126
(
24
):
2621
-
2631
.
28.
Matatall
KA
,
Jeong
M
,
Chen
S
, et al
.
Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation
.
Cell Rep
.
2016
;
17
(
10
):
2584
-
2595
.
29.
Hirche
C
,
Frenz
T
,
Haas
SF
, et al
.
Systemic virus infections differentially modulate cell cycle state and functionality of long-term hematopoietic stem cells in vivo
.
Cell Rep
.
2017
;
19
(
11
):
2345
-
2356
.
30.
Essers
MAG
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNα activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
31.
Stubbins
RJ
,
Platzbecker
U
,
Karsan
A
.
Inflammation and myeloid malignancy: quenching the flame
.
Blood
.
2022
;
140
(
10
):
1067
-
1074
.
32.
Wu
X
,
Dao Thi
VL
,
Huang
Y
, et al
.
Intrinsic immunity shapes viral resistance of stem cells
.
Cell
.
2018
;
172
(
3
):
423
-
438.e25
.
33.
Gough
J
,
Messina
NL
,
Clarke
CJP
,
Johnstone
RW
, et al
.
Constitutive type I interferon modulates homeostatic balance through tonic signaling
.
Immunity
.
2012
;
36
(
2
):
166
-
174
.
34.
Sato
T
,
Onai
N
,
Yoshihara
H
,
Arai
F
,
Suda
T
,
Ohteki
T
.
Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon–dependent exhaustion
.
Nat Med
.
2009
;
15
(
6
):
696
-
700
.
35.
Rundberg Nilsson
S
,
Xian
H
,
Shalapour
S
,
Cammenga
J
,
Karin
M
,
Karin
M
.
IRF1 regulates self-renewal and stress responsiveness to support hematopoietic stem cell maintenance
.
Sci Adv
.
2023
;
9
(
43
):
eadg5391
.
36.
Scheller
M
,
Ludwig
AK
,
Göllner
S
, et al
.
Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response
.
Nat Cancer
.
2021
;
2
(
5
):
527
-
544
.
37.
An
N
,
Khan
S
,
Imgruet
MK
, et al
.
Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS
.
Blood
.
2018
;
131
(
24
):
2682
-
2697
.
38.
Ellis
T
,
Gambardella
L
,
Horcher
M
, et al
.
The transcriptional repressor CDP (Cutl1) is essential for epithelial cell differentiation of the lung and the hair follicle
.
Genes Dev
.
2001
;
15
(
17
):
2307
-
2319
.
39.
Luong
MX
,
Van Der Meijden
CM
,
Xing
D
, et al
.
Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility
.
Mol Cell Biol
.
2002
;
22
(
5
):
1424
-
1437
.
40.
Tufarelli
C
,
Fujiwara
Y
,
Zappulla
DC
,
Neufeld
EJ
.
Hair defects and pup loss in mice with targeted deletion of the first cut repeat domain of the Cux/CDP homeoprotein gene
.
Dev Biol
.
1998
;
200
(
1
):
69
-
81
.
41.
Zhao
B
,
Socha
J
,
Toth
A
, et al
.
The homeobox transcription factor Cux1 coordinates postnatal epithelial developmental timing but is dispensable for lung organogenesis and regeneration
.
AM J Respir Cell Mol Bio
.
2025
;
72
(
6
):
678
-
687
.
42.
Oppermann
H
,
Marcos-Grañeda
E
,
Weiss
LA
, et al
.
CUX1-related neurodevelopmental disorder: deep insights into phenotype-genotype spectrum and underlying pathology
.
Eur J Hum Genet
.
2023
;
31
(
11
):
1251
-
1260
.
43.
Grueber
WB
,
Jan
LY
,
Jan
YN
.
Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of drosophila multidendritic neurons
.
Cell
.
2003
;
112
(
6
):
805
-
818
.
44.
Pitsouli
C
,
Perrimon
N
.
The homeobox transcription factor cut coordinates patterning and growth during Drosophila airway remodeling
.
Sci Signal
.
2013
;
6
(
263
):
ra12
.
45.
Wong
CC
,
Martincorena
I
,
Rust
AG
, et al;
Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
Green
Massie
Nangalia
Lempidaki
Döhner
Döhner
Bray
McDermott
Papaemmanuil
Campbell
Adams
.
Inactivating CUX1 mutations promote tumorigenesis
.
Nat Genet
.
2014
;
46
(
1
):
33
-
38
.
46.
Mcnerney
ME
,
Brown
CD
,
Wang
X
, et al
.
CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia
.
Blood
.
2013
;
121
(
6
):
975
-
983
.
47.
Bernard
E
,
Tuechler
H
,
Greenberg
PL
, et al
.
Molecular international prognostic scoring system for myelodysplastic syndromes
.
NEJM Evid
.
2022
;
1
(
7
):
EVIDoa2200008
.
48.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
49.
Papaemmanuil
E
,
Gerstung
M
,
Malcovati
L
, et al;
Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
.
Clinical and biological implications of driver mutations in myelodysplastic syndromes
.
Blood
.
2013
;
122
(
22
):
3616
-
3699
.
50.
Yoshizato
T
,
Nannya
Y
,
Atsuta
Y
, et al
.
Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation
.
Blood
.
2017
;
129
(
17
):
2347
-
2358
.
51.
Fröhling
S
,
Schlenk
RF
,
Kayser
S
, et al;
German-Austrian AML Study Group
.
Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B
.
Blood
.
2006
;
108
(
10
):
3280
-
3288
.
52.
The Cancer Genome Atlas Research Network
,
Ley
TJ
,
Miller
C
,
Ding
L
, et al
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med Overseas Ed
.
2013
;
368
(
22
):
2059
-
2074
.
53.
Schaefer
BC
,
Schaefer
ML
,
Kappler
JW
,
Marrack
P
,
Kedl
RM
.
Observation of antigen-dependent CD8+ T-Cell/ dendritic cell interactions in vivo
.
Cell Immunol
.
2001
;
214
(
2
):
110
-
122
.
54.
Imgruet
MK
,
Lutze
J
,
An
N
, et al
.
Loss of a 7q gene,CUX1, disrupts epigenetically driven DNA repair and drives therapy-related myeloid neoplasms
.
Blood
.
2021
;
138
(
9
):
790
-
805
.
55.
Beckett
D
,
Kovaleva
E
,
Schatz
PJ
.
A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation
.
Protein Sci
.
1999
;
8
(
4
):
921
-
929
.
56.
Morcos
MNF
,
Schoedel
KB
,
Hoppe
A
, et al
.
SCA-1 expression level identifies quiescent hematopoietic stem and progenitor cells
.
Stem Cell Rep
.
2017
;
8
(
6
):
1472
-
1478
.
57.
Wilson
K
,
Kent
DG
,
Buettner
F
,
Shehata
M
, et al
.
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
.
Cell Stem Cell
.
2015
;
16
(
6
):
712
-
724
.
58.
Challen
GA
,
Boles
NC
,
Chambers
SM
,
Goodell
MA
.
Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1
.
Cell Stem Cell
.
2010
;
6
(
3
):
265
-
278
.
59.
Balazs
AB
,
Fabian
AJ
,
Esmon
CT
,
Mulligan
RC
.
Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow
.
Blood
.
2006
;
107
(
6
):
2317
-
2321
.
60.
Shin
JY
,
Hu
W
,
Naramura
M
,
Park
CY
.
High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias
.
J Exp Med
.
2014
;
211
(
2
):
217
-
231
.
61.
Benveniste
P
,
Frelin
C
,
Janmohamed
S
, et al
.
Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
.
Cell Stem Cell
.
2010
;
6
(
1
):
48
-
58
.
62.
Lengefeld
J
,
Cheng
C-W
,
Maretich
P
, et al
.
Cell size is a determinant of stem cell potential during aging
.
Sci Adv
.
2021
;
7
(
46
):
eabk0271
.
63.
Sommerkamp
P
,
Romero-Mulero
MC
,
Narr
A
, et al
.
Mouse multipotent progenitor 5 cells are located at the interphase between hematopoietic stem and progenitor cells
.
Blood
.
2021
;
137
(
23
):
3218
-
3224
.
64.
Rodriguez-Fraticelli
AE
,
Weinreb
C
,
Wang
S-W
, et al
.
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis
.
Nature
.
2020
;
583
(
7817
):
585
-
589
.
65.
Pietras
EM
,
Lakshminarasimhan
R
,
Techner
J-M
, et al
.
Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons
.
J Exp Med
.
2014
;
211
(
2
):
245
-
262
.
66.
Detomaso
D
,
Yosef
N
.
Hotspot identifies informative gene modules across modalities of single-cell genomics
.
Cell Syst
.
2021
;
12
(
5
):
446
-
456.e9
.
67.
Calvanese
V
,
Nguyen
AT
,
Bolan
TJ
, et al
.
MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment
.
Nature
.
2019
;
576
(
7786
):
281
-
286
.
68.
Lehnertz
B
,
Chagraoui
J
,
Macrae
T
, et al
.
HLFexpression defines the human hematopoietic stem cell state
.
Blood
.
2021
;
138
(
25
):
2642
-
2654
.
69.
Luo
H
,
Cortés-López
M
,
Tam
CL
, et al
.
SON is an essential m6A target for hematopoietic stem cell fate
.
Cell Stem Cell
.
2023
;
30
(
12
):
1658
-
1673.e10
.
70.
Lawrence
HJ
,
Christensen
J
,
Fong
S
, et al
.
Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells
.
Blood
.
2005
;
106
(
12
):
3988
-
3994
.
71.
Wilkinson
AC
,
Ishida
R
,
Nakauchi
H
,
Yamazaki
S
.
Long-term ex vivo expansion of mouse hematopoietic stem cells
.
Nat Protoc
.
2020
;
15
(
2
):
628
-
648
.
72.
Loeffler
D
,
Wehling
A
,
Schneiter
F
, et al
.
Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells
.
Nature
.
2019
;
573
(
7774
):
426
-
429
.
73.
Bahr
C
,
Von Paleske
L
,
Uslu
VV
, et al
.
A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies
.
Nature
.
2018
;
553
(
7689
):
515
-
520
.
74.
Gao
CF
,
Vaikuntanathan
S
,
Riesenfeld
SJ
.
Dissection and integration of bursty transcriptional dynamics for complex systems
.
Biophys Comput Biol
.
2024
;
121
(
18
):
e2306901121
.
75.
Liu
W
,
Kurkewich
JL
,
Stoddart
A
, et al
.
CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex
.
Cell Rep
.
2024
;
43
(
5
):
114227
.
76.
Magnusson
M
,
Brun
ACM
,
Miyake
N
, et al
.
HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development
.
Blood
.
2007
;
109
(
9
):
3687
-
3696
.
77.
Chen
JY
,
Miyanishi
M
,
Wang
SK
, et al
.
Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
.
Nature
.
2016
;
530
(
7589
):
223
-
227
.
78.
Li
J
,
Williams
MJ
,
Park
HJ
, et al
.
STAT1 is essential for HSC function and maintains MHCIIhi stem cells that resist myeloablation and neoplastic expansion
.
Blood
.
2022
;
140
(
14
):
1592
-
1606
.
79.
Corces
MR
,
Granja
JM
,
Shams
S
, et al;
Cancer Genome Atlas Analysis Network
Greenleaf
Chang
.
The chromatin accessibility landscape of primary human cancers
.
Science
.
2018
;
362
(
6413
):
eaav1898
.
80.
Clapes
T
,
Polyzou
A
,
Prater
P
, et al
.
Chemotherapy-induced transposable elements activate MDA5 to enhance haematopoietic regeneration
.
Nat Cell Biol
.
2021
;
23
(
7
):
704
-
717
.
81.
Dhillon
P
,
Mulholland
KA
,
Hu
H
, et al
.
Increased levels of endogenous retroviruses trigger fibroinflammation and play a role in kidney disease development
.
Nat Commun
.
2023
;
14
(
1
):
559
.
82.
Kassiotis
G
.
The immunological conundrum of endogenous retroelements
.
Annu Rev Immunol
.
2023
;
41
:
99
-
125
.
83.
Lima-Junior
DS
,
Krishnamurthy
SR
,
Bouladoux
N
, et al
.
Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota
.
Cell
.
2021
;
184
(
14
):
3794
-
3811.e19
.
84.
Nishio
H
,
Walsh
MJ
.
CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription
.
Proc Natl Acad Sci U S A
.
2004
;
101
(
31
):
11257
-
11262
.
85.
Imgruet
MK
,
Lutze
J
,
An
NNA
, et al
.
Loss of a 7q gene, CUX1 , disrupts epigenetic-driven DNA repair and drives therapy-related myeloid neoplasms
.
Blood
.
2021
;
138
(
9
):
790
-
805
.
86.
Jiang
Q
,
Ang
JYJ
,
Lee
AY
, et al
.
G9a plays distinct roles in maintaining DNA methylation, retrotransposon silencing, and chromatin looping
.
Cell Rep
.
2020
;
33
(
4
):
108315
.
87.
Liu
M
,
Thomas
SL
,
Dewitt
AK
, et al
.
Dual inhibition of DNA and histone methyltransferases increases viral mimicry in ovarian cancer cells
.
Cancer Res
.
2018
;
78
(
20
):
5754
-
5766
.
88.
Avgustinova
A
,
Laudanna
C
,
Pascual-García
M
, et al
.
Repression of endogenous retroviruses prevents antiviral immune response and is required for mammary gland development
.
Cell Stem Cell
.
2021
;
28
(
10
):
1790
-
1804.e8
.
89.
Leung
DC
,
Dong
KB
,
Maksakova
IA
, et al
.
Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing
.
Proc Natl Acad Sci U S A
.
2011
;
108
(
14
):
5718
-
5723
.
90.
Maksakova
IA
,
Thompson
PJ
,
Goyal
P
, et al
.
Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells
.
Epigenetics Chromatin
.
2013
;
6
(
1
):
15
.
91.
Chen
X
,
Skutt-Kakaria
K
,
Davison
J
, et al
.
G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment
.
Genes Dev
.
2012
;
26
(
22
):
2499
-
2511
.
92.
Fang
TC
,
Schaefer
U
,
Mecklenbrauker
I
, et al
.
Histone H3 lysine 9 di-methylation as an epigenetic signature of the interferon response
.
J Exp Med
.
2012
;
209
(
4
):
661
-
669
.
93.
Hansen
AM
,
Ge
Y
,
Schuster
MB
, et al
.
H3K9 dimethylation safeguards cancer cells against activation of the interferon pathway
.
Sci Adv
.
2022
;
8
(
11
):
eabf8627
.
94.
Herquel
B
,
Ouararhni
K
,
Martianov
I
, et al
.
Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA
.
Nat Struct Mol Biol
.
2013
;
20
(
3
):
339
-
346
.
95.
Chuong
EB
,
Elde
NC
,
Feschotte
C
.
Regulatory evolution of innate immunity through co-option of endogenous retroviruses
.
Science
.
2016
;
351
(
6277
):
1083
-
1087
.
96.
Subramanian
RP
,
Wildschutte
JH
,
Russo
C
,
Coffin
JM
.
Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses
.
Retrovirology
.
2011
;
8
:
90
.
97.
Liu
X
,
Liu
Z
,
Wu
Z
, et al
.
Resurrection of endogenous retroviruses during aging reinforces senescence
.
Cell
.
2023
;
186
(
2
):
287
-
304.e26
.
98.
Junt
T
,
Barchet
W
.
Translating nucleic acid-sensing pathways into therapies
.
Nat Rev Immunol
.
2015
;
15
(
9
):
529
-
544
.
99.
Baldwin
ET
,
Van Eeuwen
T
,
Hoyos
D
, et al
.
Structures, functions and adaptations of the human LINE-1 ORF2 protein
.
Nature
.
2024
;
626
(
7997
):
194
-
206
.
100.
Martinez
TC
,
McNerney
ME
.
Haploinsufficient transcription factors in myeloid neoplasms
.
Annu Rev Pathol
.
2024
;
19
:
571
-
598
.
101.
Mckenzie
MD
,
Ghisi
M
,
Oxley
EP
, et al
.
Interconversion between tumorigenic and differentiated states in acute myeloid leukemia
.
Cell Stem Cell
.
2019
;
25
(
2
):
258
-
272.e9
.
102.
Li
Q
,
Bohin
N
,
Wen
T
, et al
.
Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness
.
Nature
.
2013
;
504
(
7478
):
143
-
147
.
103.
An
N
,
Khan
S
,
Imgruet
MK
,
Jueng
L
,
Gurbuxani
S
,
Mcnerney
ME
.
Oncogenic RAS promotes leukemic transformation of CUX1-deficient cells
.
Oncogene
.
2023
;
42
(
12
):
881
-
893
.
104.
Jeong
M
,
Park
HJ
,
Celik
H
, et al
.
Loss of Dnmt3a immortalizes hematopoietic stem cells in vivo
.
Cell Rep
.
2018
;
23
(
1
):
1
-
10
.
105.
Brown
JW
,
Cho
CJ
,
Mills
JC
.
Paligenosis: cellular remodeling during tissue repair
.
Annu Rev Physiol
.
2022
;
84
:
461
-
483
.
106.
Barbieri
D
,
Elvira-Matelot
E
,
Pelinski
Y
, et al
.
Thrombopoietin protects hematopoietic stem cells from retrotransposon-mediated damage by promoting an antiviral response
.
J Exp Med
.
2018
;
215
(
5
):
1463
-
1480
.
107.
Matatall
KA
,
Jeong
M
,
Chen
S
, et al
.
Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation
.
Cell Rep
.
2016
;
17
(
10
):
2584
-
2595
.
108.
Gu
Z
,
Liu
Y
,
Zhang
Y
, et al
.
Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia
.
Nat Genet
.
2021
;
53
(
5
):
672
-
682
. 2021.
109.
Cuellar
TL
,
Herzner
A-M
,
Zhang
X
, et al
.
Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia
.
J Cell Biol
.
2017
;
216
(
11
):
3535
-
3549
.
110.
Garcia
P
,
Jarassier
W
,
Brun
C
, et al
.
Setdb1 protects genome integrity in murine muscle stem cells to allow for regenerative myogenesis and inflammation
.
Dev Cell
.
2024
;
59
(
17
):
2375
-
2392.e8
.
111.
Colombo
AR
,
Zubair
A
,
Thiagarajan
D
,
Nuzhdin
S
,
Triche
TJ
,
Ramsingh
G
.
Suppression of transposable elements in leukemic stem cells
.
Sci Rep
.
2017
;
7
(
1
):
7029
.
112.
Giorgetti
L
,
Siggers
T
,
Tiana
G
, et al
.
Noncooperative interactions between transcription factors and Clustered DNA Binding Sites Enable Graded Transcriptional Responses to Environmental Inputs
.
Mol Cell
.
2010
;
37
(
3
):
418
-
428
.
113.
Kull
T
,
Wehling
A
,
Etzrodt
M
, et al
.
NfκB signaling dynamics and their target genes differ between mouse blood cell types and induce distinct cell behavior
.
Blood
.
2022
;
140
(
2
):
99
-
111
.
114.
Song
M
,
Ping
Y
,
Zhang
K
, et al
.
Low-dose IFNγ induces tumor cell stemness in tumor microenvironment of non–small cell lung cancer
.
Cancer Res
.
2019
;
79
(
14
):
3737
-
3748
.
115.
Naigles
B
,
Narla
AV
,
Soroczynski
J
,
Tsimring
LS
,
Hao
N
.
Quantifying dynamic pro-inflammatory gene expression and heterogeneity in single macrophage cells
.
J Biol Chem
.
2023
;
299
(
10
):
105230
.
116.
Hartner
JC
,
Walkley
CR
,
Lu
J
,
Orkin
SH
.
ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling
.
Nat Immunol
.
2009
;
10
(
1
):
109
-
115
.
117.
Mapperley
C
,
Van De Lagemaat
LN
,
Lawson
H
, et al
.
The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function
.
J Exp Med
.
2021
;
218
(
3
):
e20200829
.
118.
Yang
G
,
Xu
Y
,
Chen
X
,
Hu
G
.
IFITM1 plays an essential role in the antiproliferative action of interferon-γ
.
Oncogene
.
2007
;
26
(
4
):
594
-
603
.
119.
Katsoulidis
E
,
Carayol
N
,
Woodard
J
, et al
.
Role of schlafen 2 (SLFN2) in the generation of interferon α-induced growth inhibitory responses
.
J Biol Chem
.
2009
;
284
(
37
):
25051
-
25064
.
120.
Kodigepalli
KM
,
Bonifati
S
,
Tirumuru
N
,
Wu
L
.
SAMHD1 modulates in vitro proliferation of acute myeloid leukemia-derived THP-1 cells through the PI3K-Akt-p27 axis
.
Cell Cycle
.
2018
;
17
(
9
):
1124
-
1137
.
121.
Busse
DC
,
Habgood-Coote
D
,
Clare
S
, et al
.
Interferon-induced protein 44 and interferon-induced protein 44-like restrict replication of respiratory syncytial virus
.
J Virol
.
2020
;
94
(
18
):
e00297-20
.
122.
Altshuler
A
,
Amitai-Lange
A
,
Tarazi
N
, et al
.
Discrete limbal epithelial stem cell populations mediate corneal homeostasis and wound healing
.
Cell Stem Cell
.
2021
;
28
(
7
):
1248
-
1261.e8
.
123.
Kim
D
,
Chen
R
,
Sheu
M
, et al
.
Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3
.
Nat Commun
.
2019
;
10
(
1
):
2811
. 2019.
You do not currently have access to this content.
Sign in via your Institution