Abstract
Abstract 646
The advent of imatinib, a Bcr-Abl tyrosine kinase inhibitor revolutionized the treatment for patients with CML. Development of resistance, limited activity in blast crisis CML, and more importantly, insensitivity of quiescent primitive CD34+ CML progenitor cells are evolving problems facing this therapy. Antiapoptotic Bcl-2 proteins were known to be highly expressed in Bcr-Abl expressing cells and inhibition of Bcl-2/Bcl-XL by the selective inhibitor ABT-737 was reported to augment the killing of tyrosine kinase inhibitors in CML cells. However, its effect on quiescent primitive CD34+ CML progenitor cells is unknown. To investigate the effect of activating the apoptotic machinery in quiescent primitive CD34+CML progenitor cells, which are resistant to current therapies, we first compared the expression of antiapoptotic proteins in proliferating and quiescent primitive CD34+CML progenitor cells. Cells obtained from patients with blast crisis CML were stained with the fluorescent 5-(and 6-) carboxy-fluorescein diacetate succinimidyl ester, a cell proliferation tracking dye, and cultured in vitro for 4-6 days. Cells were then stained with CD34 antibody and FACS sorted into proliferating and quiescent CD34+/PI- CML progenitor cells. RNA levels of antiapoptotic proteins in these two cell populations (n=8) were determined by real-time RT-PCR: quiescent and proliferating primitive CD34+ CML progenitor cells expressed similar levels of Bcl-2, Bcl-XL, Mcl-1, and XIAP implying that like total blast cells, quiescent primitive CD34+CML progenitor cells may also be sensitive to agents targeting these proteins. We next treated 5 samples obtained from patients with blast crisis CML with ABT-737 and measured apoptosis in total CD34+ cells, proliferating CD34+ cells, and quiescent CD34+ cells. All 5 patients were resistant to or relapsed from imatinib and nilotinib and/or dasatinib treatments and they were insensitive to imatinib in vitro as expected. However, cells from 4 patients were sensitive to ABT-737, in bulk blasts and in both proliferating and quiescent CD34+ CML cell compartments: % specific apoptosis with 100 nM of ABT-737=40.8±7.7, 38.4±8.5, 40.0±5.1, respectively at 24 hours. Interestingly, when ABT-737 was combined with imatinib, cell death was greatly enhanced in cells from all 5 patients in all cell compartments (combination index=0.059±0.032, 0.041±0.025, 0.111±0.042, respectively). Furthermore, we showed previously, that triptolide, an antitumor agent from a Chinese herb, induces apoptosis in both proliferating and quiescent primitive CD34+CML progenitor cells by decreasing Mcl-1 which is a resistant factor for ABT-737, XIAP, and Bcr-Abl protein levels (Mak D. et al., MCT in press). When ABT-737 was combined with triptolide, a significant increase of cell death was found in total CD34+ and proliferating as well as quiescent primitive CD34+CML cells with combination index at EC50=0.57, 0.55, and 0.56, respectively in cells from the 5 patients suggesting a high degree of synergism. In summary, Bcl-2, Bcl-XL, Mcl-1, and XIAP are equally expressed in proliferating and quiescent primitive CML cells and targeting Bcl-2/Bcl-XL promotes death of blast crisis CML cells, tyrosine kinase inhibitor resistant CML cells, and quiescent primitive CD34+ CML progenitor cells. Researches suggest that the combination of apoptosis inducing agents and tyrosine kinase inhibitor is a novel strategy to overcome tyrosine kinase resistance, eradicate quiescent primitive CML progenitor cells, and improve current therapy for patients with CML.
No relevant conflicts of interest to declare.
Author notes
Asterisk with author names denotes non-ASH members.