Aberrant expression of long non-coding RNAs (lncRNAs) might contribute to the development and progression of leukemia. However, functional studies on the actual role of lncRNAs during the development of leukemia remain scarce, and very few lncRNAs have been shown to be involved in leukemogenesis. HoxBlinc is an anterior HoxB gene-associated intergenic lncRNA. It is a cis-acting lncRNA and functions as an epigenetic regulator to coordinate anterior HoxB gene expression. Giving the dysregulation of HOXA/B genes is a dominant mechanism of leukemic transformation, HoxBlinc might be an oncogenic lncRNA of leukemia.

To determine whether HOXBLINC lncRNA is aberrantly expressed in human AML samples, we performed RT-qPCR on bone marrow mononuclear cells (BMMNCs) from a cohort of 73 AML patients. A dramatic up-regulation of HOXBLINC was observed in over 60% of the patients. When TCGA-AML datasets of a cohort of 179 AML patients were analyzed for their HOXBLINC expression, a significant portion of these AML patients had high levels of HOXBLINC expression. Interestingly, AML patients with high HOXBLINC expression (the top thirty percentile of patients) had a significantly shortened survival as compared to patients with low HOXBLINC expression (the bottom thirty percentile).

To investigate the impact of HoxBlinc overexpression on normal hematopoiesis and the pathogenesis of hematological malignancies in vivo, we generated a HoxBlinc transgenic(Tg) mouse model. Within 1 year of age, 67% of the HoxBlincTg mice (10 of 15) died or were sacrificed because of a moribund condition due to AML.

We then assessed whether overexpression of HoxBlinc affects the pools of HSC/HPCs by flow cytometric analysis on the BM cells of young WT and HoxBlincTg mice (8-10 weeks of age). HoxBlincTg BM had a dramatically greater number of LT-HSC, ST-HSC, MPP cells, and a significantly higher percentage of GMP, but a lower percentage of MEP/CMP cell populations as compared to WT group. To determine the effect of HoxBlinc overexpression on the function of HSC/HPCs, we performed paired-daughter cell assay, replating assay and liquid culture on sorted LT-HSC, LSK or LK cells from young WT and HoxBlincTg mice, the results indicate that transgenic expression of HoxBlinc enhances HSC self-renewal and impairs HSC/HPC differentiation.

To assess whether HoxBlinc overexpression-mediated changes in HSC/HPC function are cell-autonomous, we performed competitive transplantation assays to examine the repopulating capacity of HoxBlincTg BM cells. When the donor cell chimerism was analyzed kinetically in the PB of recipient mice, the CD45.2 cell population remained ~50% in mice receiving WT BM cells, whereas the CD45.2 chimerism in the recipients transplanted with HoxBlincTg BM cells steadily increased. Interestingly, mice receiving HoxBlincTg BM cells developed AML at 2-6 months after transplantation.

Previous data reported that HoxBlinc can recruit the Setd1a/Mll1 histone H3K4 methyltransferase complex to mediate formation of the active topologically associated domain (TAD) in the anterior HoxB locus for transcription of the anterior HoxB genes. In this study, LSK or LK cells sorted from young WT and HoxBlincTg mice were analyzed by RNA-seq, ATAC-seq, H3K4me3 CHIP-seq and 4C analysis. Mechanistically, HoxBlinc overexpression alters HoxB locus chromatin three-dimensional organization to enhance enhancer/promoter chromatin accessibility and coordinate the expression of not only HoxB1-5 but also HoxA9, Runx1, Meis1 and so on, which are critical genes for HSC regulation and/or leukemogenesis.

Our study provides novel insights into the HSC regulation by lncRNAs and identifies HOXBLINC, which coordinates to maintain an oncogenic transcription program for leukemic transformation, as a potent oncogenic lncRNA in leukemogenesis.

Disclosures

No relevant conflicts of interest to declare.

Author notes

*

Asterisk with author names denotes non-ASH members.

Sign in via your Institution