Abstract

The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.

1.
Laurenti
E
,
Göttgens
B
.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature
.
2018
;
553
(
7689
):
418
-
426
.
2.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
3.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
4.
McKerrell
T
,
Park
N
,
Moreno
T
, et al
.
Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis
.
Cell Rep
.
2015
;
10
(
8
):
1239
-
1245
.
5.
Xie
M
,
Lu
C
,
Wang
J
, et al
.
Age-related mutations associated with clonal hematopoietic expansion and malignancies
.
Nat Med
.
2014
;
20
(
12
):
1472
-
1478
.
6.
Darwin
C
.
On the Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life
.
John Murray
;
1859
.
7.
Spencer Chapman
M
,
Ranzoni
AM
,
Myers
B
, et al
.
Lineage tracing of human development through somatic mutations
.
Nature
.
2021
;
595
(
7865
):
85
-
90
.
8.
Martincorena
I
,
Raine
KM
,
Gerstung
M
, et al
.
Universal patterns of selection in cancer and somatic tissues
.
Cell
.
2017
;
171
(
5
):
1029
-
1041.e21
.
9.
Mitchell
E
,
Spencer Chapman
M
,
Williams
N
, et al
.
Clonal dynamics of haematopoiesis across the human lifespan
.
Nature
.
2022
;
606
(
7913
):
343
-
350
.
10.
Blokzijl
F
,
de Ligt
J
,
Jager
M
, et al
.
Tissue-specific mutation accumulation in human adult stem cells during life
.
Nature
.
2016
;
538
(
7624
):
260
-
264
.
11.
Lee-Six
H
,
Øbro
NF
,
Shepherd
MS
, et al
.
Population dynamics of normal human blood inferred from somatic mutations
.
Nature
.
2018
;
561
(
7724
):
473
-
478
.
12.
Osorio
FG
,
Rosendahl Huber
A
,
Oka
R
, et al
.
Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis
.
Cell Rep
.
2018
;
25
(
9
):
2308
-
2316.e4
.
13.
Abascal
F
,
Harvey
LMR
,
Mitchell
E
, et al
.
Somatic mutation landscapes at single-molecule resolution
.
Nature
.
2021
;
593
(
7859
):
405
-
410
.
14.
de Kanter
JK
,
Peci
F
,
Bertrums
E
, et al
.
Antiviral treatment causes a unique mutational signature in cancers of transplantation recipients
.
Cell Stem Cell
.
2021
;
28
(
10
):
1726
-
1739.e6
.
15.
Latchney
SE
,
Calvi
LM
.
The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging
.
Semin Hematol
.
2017
;
54
(
1
):
25
-
32
.
16.
Goodell
MA
,
Rando
TA
.
Stem cells and healthy aging
.
Science
.
2015
;
350
(
6265
):
1199
-
1204
.
17.
Challen
GA
,
Goodell
MA
.
Clonal hematopoiesis: mechanisms driving dominance of stem cell clones
.
Blood
.
2020
;
136
(
14
):
1590
-
1598
.
18.
Fabre
MA
,
de Almeida
JG
,
Fiorillo
E
, et al
.
The longitudinal dynamics and natural history of clonal haematopoiesis
.
Nature
.
2022
;
606
(
7913
):
335
-
342
.
19.
Beerenwinkel
N
,
Schwarz
RF
,
Gerstung
M
,
Markowetz
F
.
Cancer evolution: mathematical models and computational inference
.
Syst Biol
.
2015
;
64
(
1
):
e1
-
e25
.
20.
Watson
CJ
,
Papula
AL
,
Poon
GYP
, et al
.
The evolutionary dynamics and fitness landscape of clonal hematopoiesis
.
Science
.
2020
;
367
(
6485
):
1449
-
1454
.
21.
Weinstock
JS
,
Gopakumar
J
,
Burugula
BB
, et al
.
Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis
.
Nature
.
2023
;
616
(
7958
):
755
-
763
.
22.
Robertson
NA
,
Latorre-Crespo
E
,
Terradas-Terradas
M
, et al
.
Longitudinal dynamics of clonal hematopoiesis identifies gene-specific fitness effects
.
Nat Med
.
2022
;
28
(
7
):
1439
-
1446
.
23.
Rossi
M
,
Meggendorfer
M
,
Zampini
M
, et al
.
Clinical relevance of clonal hematopoiesis in persons aged ≥80 years
.
Blood
.
2021
;
138
(
21
):
2093
-
2105
.
24.
van Zeventer
IA
,
de Graaf
AO
,
Salzbrunn
JB
, et al
.
Evolutionary landscape of clonal hematopoiesis in 3,359 individuals from the general population
.
Cancer Cell
.
2023
;
41
(
6
):
1017
-
1031.e4
.
25.
Fabre
MA
,
McKerrell
T
,
Zwiebel
M
, et al
.
Concordance for clonal hematopoiesis is limited in elderly twins
.
Blood
.
2020
;
135
(
4
):
269
-
273
.
26.
Hansen
JW
,
Pedersen
DA
,
Larsen
LA
, et al
.
Clonal hematopoiesis in elderly twins: concordance, discordance, and mortality
.
Blood
.
2020
;
135
(
4
):
261
-
268
.
27.
Williams
N
,
Lee
J
,
Mitchell
E
, et al
.
Life histories of myeloproliferative neoplasms inferred from phylogenies
.
Nature
.
2022
;
602
(
7895
):
162
-
168
.
28.
Sousos
N
,
Ní Leathlobhair
M
,
Simoglou Karali
C
, et al
.
In utero origin of myelofibrosis presenting in adult monozygotic twins
.
Nat Med
.
2022
;
28
(
6
):
1207
-
1211
.
29.
Zink
F
,
Stacey
SN
,
Norddahl
GL
, et al
.
Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly
.
Blood
.
2017
;
130
(
6
):
742
-
752
.
30.
Young
AL
,
Challen
GA
,
Birmann
BM
,
Druley
TE
.
Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
.
Nat Commun
.
2016
;
7
:
12484
.
31.
Yoshizato
T
,
Dumitriu
B
,
Hosokawa
K
, et al
.
Somatic mutations and clonal hematopoiesis in aplastic anemia
.
N Engl J Med
.
2015
;
373
(
1
):
35
-
47
.
32.
Heuser
M
,
Schlarmann
C
,
Dobbernack
V
, et al
.
Genetic characterization of acquired aplastic anemia by targeted sequencing
.
Haematologica
.
2014
;
99
(
9
):
e165
-
e167
.
33.
Kulasekararaj
AG
,
Jiang
J
,
Smith
AE
, et al
.
Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome
.
Blood
.
2014
;
124
(
17
):
2698
-
2704
.
34.
Lane
AA
,
Odejide
O
,
Kopp
N
, et al
.
Low frequency clonal mutations recoverable by deep sequencing in patients with aplastic anemia
.
Leukemia
.
2013
;
27
(
4
):
968
-
971
.
35.
Ogawa
S
.
Clonal hematopoiesis in acquired aplastic anemia
.
Blood
.
2016
;
128
(
3
):
337
-
347
.
36.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e4
.
37.
Gibson
CJ
,
Lindsley
RC
,
Tchekmedyian
V
, et al
.
Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
.
J Clin Oncol
.
2017
;
35
(
14
):
1598
-
1605
.
38.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al
.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature
.
2015
;
518
(
7540
):
552
-
555
.
39.
Colom
B
,
Alcolea
MP
,
Piedrafita
G
, et al
.
Spatial competition shapes the dynamic mutational landscape of normal esophageal epithelium
.
Nat Genet
.
2020
;
52
(
6
):
604
-
614
.
40.
Tovy
A
,
Rosas
C
,
Gaikwad
AS
, et al
.
Perturbed hematopoiesis in individuals with germline DNMT3A overgrowth Tatton-Brown-Rahman syndrome
.
Haematologica
.
2022
;
107
(
4
):
887
-
898
.
41.
Ferrer
A
.
Clonal hematopoiesis and myeloid neoplasms in the context of telomere biology disorders
.
Curr Hematol Malig Rep
.
2022
;
17
(
3
):
61
-
68
.
42.
Kessler
MD
,
Damask
A
,
O'Keeffe
S
, et al
.
Common and rare variant associations with clonal haematopoiesis phenotypes
.
Nature
.
2022
;
612
(
7939
):
301
-
309
.
43.
Kar
SP
,
Quiros
PM
,
Gu
M
, et al
.
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis
.
Nat Genet
.
2022
;
54
(
8
):
1155
-
1166
.
44.
DeBoy
EA
,
Tassia
MG
,
Schratz
KE
, et al
.
Familial clonal hematopoiesis in a long Telomere syndrome
.
N Engl J Med
.
2023
;
388
(
26
):
2422
-
2433
.
45.
Vassiliou
G
.
Telomere length and clonal hematopoiesis
.
N Engl J Med
.
2023
;
388
(
26
):
2481
-
2484
.
46.
Cai
Z
,
Kotzin
JJ
,
Ramdas
B
, et al
.
Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis
.
Cell Stem Cell
.
2018
;
23
(
6
):
833
-
849.e5
.
47.
Zhang
Q
,
Zhao
K
,
Shen
Q
, et al
.
Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6
.
Nature
.
2015
;
525
(
7569
):
389
-
393
.
48.
Meisel
M
,
Hinterleitner
R
,
Pacis
A
, et al
.
Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host
.
Nature
.
2018
;
557
(
7706
):
580
-
584
.
49.
Zhang
CRC
,
Nix
D
,
Gregory
M
, et al
.
Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients
.
Exp Hematol
.
2019
;
80
:
36
-
41.e3
.
50.
Hormaechea-Agulla
D
,
Matatall
KA
,
Le
DT
, et al
.
Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling
.
Cell Stem Cell
.
2021
;
28
(
8
):
1428
-
1442.e6
.
51.
Heyde
A
,
Rohde
D
,
McAlpine
CS
, et al
.
Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis
.
Cell
.
2021
;
184
(
5
):
1348
-
1361.e22
.
52.
Heide
T
,
Househam
J
,
Cresswell
GD
, et al
.
The co-evolution of the genome and epigenome in colorectal cancer
.
Nature
.
2022
;
611
(
7937
):
733
-
743
.
53.
Akdemir
KC
,
Le
VT
,
Kim
JM
, et al
.
Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure
.
Nat Genet
.
2020
;
52
(
11
):
1178
-
1188
.
54.
Fennell
KA
,
Vassiliadis
D
,
Lam
EYN
, et al
.
Non-genetic determinants of malignant clonal fitness at single-cell resolution
.
Nature
.
2022
;
601
(
7891
):
125
-
131
.
55.
Nangalia
J
,
Massie
CE
,
Baxter
EJ
, et al
.
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
.
N Engl J Med
.
2013
;
369
(
25
):
2391
-
2405
.
56.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
57.
Papaemmanuil
E
,
Gerstung
M
,
Malcovati
L
, et al
.
Clinical and biological implications of driver mutations in myelodysplastic syndromes
.
Blood
.
2013
;
122
(
22
):
3616
-
3627
. quiz 3699.
58.
Kent
DG
,
Green
AR
.
Order matters: the order of somatic mutations influences cancer evolution
.
Cold Spring Harb Perspect Med
.
2017
;
7
(
4
):
a027060
.
59.
Shlush
LI
,
Zandi
S
,
Mitchell
A
, et al
.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia
.
Nature
.
2014
;
506
(
7488
):
328
-
333
.
60.
Quiros
PM
,
Gu
M
,
Barcena
C
,
Iyer
V
,
Vassiliou
GS
.
NPM1 gene mutations can be confidently identified in blood DNA months before de novo AML onset
.
Blood Adv
.
2022
;
6
(
7
):
2409
-
2413
.
61.
Haferlach
T
,
Nagata
Y
,
Grossmann
V
, et al
.
Landscape of genetic lesions in 944 patients with myelodysplastic syndromes
.
Leukemia
.
2014
;
28
(
2
):
241
-
247
.
62.
Holstege
H
,
Pfeiffer
W
,
Sie
D
, et al
.
Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis
.
Genome Res
.
2014
;
24
(
5
):
733
-
742
.
63.
Abelson
S
,
Collord
G
,
Ng
SWK
, et al
.
Prediction of acute myeloid leukaemia risk in healthy individuals
.
Nature
.
2018
;
559
(
7714
):
400
-
404
.
64.
Desai
P
,
Mencia-Trinchant
N
,
Savenkov
O
, et al
.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat Med
.
2018
;
24
(
7
):
1015
-
1023
.
65.
Weeks
LD
,
Niroula
A
,
Neuberg
D
, et al
.
Prediction of risk for myeloid malignancy in clonal hematopoiesis
.
NEJM Evid
.
2023
;
2
(
5
):
EVIDoa2200310
.
66.
Gu
M
,
Kovilakam
SC
,
Dunn
WG
, et al
.
Multiparameter prediction of myeloid neoplasia risk
.
Nat Genet
.
2023
;
55
(
9
):
1523
-
1530
.
67.
Bolton
KL
,
Ptashkin
RN
,
Gao
T
, et al
.
Cancer therapy shapes the fitness landscape of clonal hematopoiesis
.
Nat Genet
.
2020
;
52
(
11
):
1219
-
1226
.
68.
Lin
AE
,
Rauch
PJ
,
Jaiswal
S
,
Ebert
BL
.
.
Clonal hematopoiesis: confluence of malignant and nonmalignant diseases
.
2022
;
6
(
1
):
187
-
200
.
69.
Rauch
PJ
,
Gopakumar
J
,
Silver
AJ
, et al
.
Loss-of-function mutations in Dnmt3a and Tet2 lead to accelerated atherosclerosis and concordant macrophage phenotypes
.
Nat Cardiovasc Res
.
2023
;
2
(
9
):
805
-
818
.
You do not currently have access to this content.
Sign in via your Institution