• 4D intravital imaging identifies platelets as the functionally dominant procoagulant surface during hemostatic plug formation.

  • Fibrin accumulation and localization in hemostatic plugs are the result of concomitant formation and degradation.

Abstract

Interplay between platelets, coagulation factors, endothelial cells (ECs), and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a 4-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation after laser-induced vascular injury was observed at the platelet plug–EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor or F12−/−mice compared with controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid. Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug–EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D−/−mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.

1.
Versteeg
HH
,
Heemskerk
JWM
,
Levi
M
,
Reitsma
PH
.
New fundamentals in hemostasis
.
Physiol Rev
.
2013
;
93
(
1
):
327
-
358
.
2.
Drake
TA
,
Morrissey
JH
,
Edgington
TS
.
Selective cellular expression of tissue factor in human tissues. implications for disorders of hemostasis and thrombosis
.
Am J Pathol
.
1989
;
134
(
5
):
1087
-
1097
.
3.
Bouchard
BA
,
Shatos
MA
,
Tracy
PB
.
Human brain pericytes differentially regulate expression of procoagulant enzyme complexes comprising the extrinsic pathway of blood coagulation
.
Arterioscler Thromb Vasc Biol
.
1997
;
17(1)
:
1
-
9
.
4.
Hoffman
M
,
Colina
CM
,
McDonald
AG
,
Arepally
GM
,
Pedersen
L
,
Monroe
DM
.
Tissue factor around dermal vessels has bound factor VII in the absence of injury
.
J Thromb Haemost
.
2007
;
5
(
7
):
1403
-
1408
.
5.
Grover
SP
,
Mackman
N
.
Tissue factor: an essential mediator of hemostasis and trigger of thrombosis
.
Arterioscler Thromb Vasc Biol
.
2018
;
38
(
4
):
709
-
725
.
6.
Gailani
D
,
Renné
T
.
The intrinsic pathway of coagulation: a target for treating thromboembolic disease?
.
J Thromb Haemost
.
2007
;
5
(
6
):
1106
-
1112
.
7.
Reddy
EC
,
Rand
ML
.
Procoagulant phosphatidylserine-exposing platelets in vitro and in vivo
.
Front Cardiovasc Med
.
2020
;
7
:
15
.
8.
Dale
GL
.
Coated-platelets: an emerging component of the procoagulant response
.
J Thromb Haemost
.
2005
;
3
(
10
):
2185
-
2192
.
9.
Jobe
SM
,
Wilson
KM
,
Leo
L
, et al
.
Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis
.
Blood
.
2008
;
111
(
3
):
1257
-
1265
.
10.
Fujii
T
,
Sakata
A
,
Nishimura
S
,
Eto
K
,
Nagata
S
.
TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
41
):
12800
-
12805
.
11.
Yang
H
,
Kim
A
,
David
T
, et al
.
TMEM16F forms a Ca2+-activated cation channel required for lipid scrambling in platelets during blood coagulation
.
Cell
.
2012
;
151
(
1
):
111
-
122
.
12.
Suzuki
J
,
Umeda
M
,
Sims
PJ
,
Nagata
S
.
Calcium-dependent phospholipid scrambling by TMEM16F
.
Nature
.
2010
;
468
(
7325
):
834
-
838
.
13.
Baig
AA
,
Haining
EJ
,
Geuss
E
, et al
.
TMEM16F-mediated platelet membrane phospholipid scrambling is critical for hemostasis and thrombosis but not thromboinflammation in mice–brief report
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
11
):
2152
-
2157
.
14.
Schmaier
AA
,
Anderson
PF
,
Chen
SM
, et al
.
TMEM16E regulates endothelial cell procoagulant activity and thrombosis
.
J Clin Invest
.
2023
;
133
(
11
):
e163808
.
15.
Popescu
NI
,
Lupu
C
,
Lupu
F
.
Extracellular protein disulfide isomerase regulates coagulation on endothelial cells through modulation of phosphatidylserine exposure
.
Blood
.
2010
;
116
(
6
):
993
-
1001
.
16.
Carman
CV
,
Nikova
DN
,
Sakurai
Y
, et al
.
Membrane curvature and PS localize coagulation proteins to filopodia and retraction fibers of endothelial cells
.
Blood Adv
.
2023
;
7
(
1
):
60
-
72
.
17.
Ivanciu
L
,
Krishnaswamy
S
,
Camire
RM
.
New insights into the spatiotemporal localization of prothrombinase in vivo
.
Blood
.
2014
;
124
(
11
):
1705
-
1714
.
18.
Miles
LA
,
Ginsberg
MH
,
White
JG
,
Plow
EF
.
Plasminogen interacts with human platelets through two distinct mechanisms
.
J Clin Invest
.
1986
;
77
(
6
):
2001
-
2009
.
19.
Whyte
CS
,
Swieringa
F
,
Mastenbroek
TG
, et al
.
Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow
.
Blood
.
2015
;
125
(
16
):
2568
-
2578
.
20.
Collet
JP
,
Montalescot
G
,
Lesty
C
,
Weisel
J W
.
A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots
.
Circ Res
.
2002
;
90
(
4
):
428
-
434
.
21.
Ni
R
,
Neves
MAD
,
Wu
C
, et al
.
Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates fibrin-dependent plasmin generation on thrombin-activated platelets
.
J Thromb Haemost
.
2020
;
18
(
9
):
2364
-
2376
.
22.
Whyte
CS
,
Morrow
GB
,
Baik
N
, et al
.
Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets
.
Blood
.
2021
;
137
(
2
):
248
-
257
.
23.
Urano
T
,
Castellino
FJ
,
Suzuki
Y
.
Regulation of plasminogen activation on cell surfaces and fibrin
.
J Thromb Haemost
.
2018
;
16
(
8
):
1487
-
1497
.
24.
Suzuki
Y
,
Yasui
H
,
Brzoska
T
,
Mogami
H
,
Urano
T
.
Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells
.
Blood
.
2011
;
118
(
11
):
3182
-
3185
.
25.
Puy
C
,
Ngo
ATP
,
Pang
J
, et al
.
Endothelial PAI-1 (plasminogen activator inhibitor-1) blocks the intrinsic pathway of coagulation, inducing the clearance and degradation of FXIa (activated factor XI)
.
Arterioscler Thromb Vasc Biol
.
2019
;
39
(
7
):
1390
-
1401
.
26.
Morrow
GB
,
Mutch
NJ
.
Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1)
.
Semin Thromb Hemost
.
2023
;
49
(
3
):
305
-
313
.
27.
Bergmeier
W
,
Boulaftali
Y
.
Adoptive transfer method to study platelet function in mouse models of disease
.
Thromb Res
.
2014
;
133
(
suppl 1
):
S3
-
S5
.
28.
Getz
TM
,
Piatt
R
,
Petrich
BG
,
Monroe
D
,
Mackman
N
,
Bergmeier
W
.
Novel mouse hemostasis model for real-time determination of bleeding time and hemostatic plug composition
.
J Thromb Haemost
.
2015
;
13
(
3
):
417
-
425
.
29.
O’Shaughnessy
EC
,
Stone
OJ
,
LaFosse
PK
, et al
.
Software for lattice light-sheet imaging of FRET biosensors, illustrated with a new Rap1 biosensor
.
J Cell Biol
.
2019
;
218
(
9
):
3153
-
3160
.
30.
Stalker
TJ
.
Mouse laser injury models: variations on a theme
.
Platelets
.
2020
;
31
(
4
):
423
-
431
.
31.
Krüger
I
,
Reusswig
F
,
Krott
KJ
, et al
.
Genetic labeling of cells allows identification and tracking of transgenic platelets in mice
.
Int J Mol Sci
.
2021
;
22
(
7
):
3710
.
32.
Furie
B
,
Furie
BC
,
Flaumenhaft
R
.
A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion
.
Thromb Haemost
.
2001
;
86
(
1
):
214
-
221
.
33.
Frijns
CJ
,
Kappelle
LJ
,
van Gijn
J
,
Nieuwenhuis
HK
,
Sixma
JJ
,
Fijnheer
R
.
Soluble adhesion molecules reflect endothelial cell activation in ischemic stroke and in carotid atherosclerosis
.
Stroke
.
1997
;
28
(
11
):
2214
-
2218
.
34.
Parry
GC
,
Erlich
JH
,
Carmeliet
P
,
Luther
T
,
Mackman
N
.
Low levels of tissue factor are compatible with development and hemostasis in mice
.
J Clin Invest
.
1998
;
101
(
3
):
560
-
569
.
35.
Pauer
H-U
,
Renne
T
,
Hemmerlein
B
, et al
.
Targeted deletion of murine coagulation factor XII gene-a model for contact phase activation in vivo
.
Thromb Haemost
.
2004
;
92
(
3
):
503
-
508
.
36.
Ploplis
VA
,
Carmeliet
P
,
Vazirzadeh
S
, et al
.
Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice
.
Circulation
.
1995
;
92
(
9
):
2585
-
2593
.
37.
Relke
N
,
Chornenki
NLJ
,
Sholzberg
M
.
Tranexamic acid evidence and controversies: an illustrated review
.
Res Pract Thromb Haemost
.
2021
;
5
:
e12546
.
38.
Kim
PY
,
Vu
TT
,
Leslie
BA
,
Stafford
AR
,
Fredenburgh
JC
,
Weitz
JI
.
Reduced plasminogen binding and delayed activation render γ′-fibrin more resistant to lysis than γA-fibrin
.
J Biol Chem
.
2014
;
289
(
40
):
27494
-
27503
.
39.
Peng
JZ
,
Xue
L
,
Chen
J
,
Chen
BS
,
Yang
YQ
.
Influence of cyclophilin D protein expression level on endothelial cell oxidative damage resistance
.
Genet Mol Res
.
2015
;
14
(
2
):
4258
-
4268
.
40.
Boulaftali
Y
,
Hess
PR
,
Getz
TM
, et al
.
Platelet ITAM signaling is critical for vascular integrity in inflammation
.
J Clin Invest
.
2013
;
123
(
2
):
908
-
916
.
41.
Maas
C
,
Renné
T
.
Coagulation factor XII in thrombosis and inflammation
.
Blood
.
2018
;
131
(
17
):
1903
-
1909
.
42.
Gruber
A
,
Hanson
SR
.
Factor XI-dependence of surface- and tissue factor-initiated thrombus propagation in primates
.
Blood
.
2003
;
102
(
3
):
953
-
955
.
43.
Kuijpers
MJ
,
Van der Meijden
PEJ
,
Feijge
MAH
, et al
.
Factor XII regulates the pathological process of thrombus formation on ruptured plaques
.
Arterioscler Thromb Vasc Biol
.
2014
;
34
(
8
):
1674
-
1680
.
44.
Renné
T
,
Nieswandt
B
,
Gailani
D
.
The intrinsic pathway of coagulation is essential for thrombus stability in mice
.
Blood Cells Mol Dis
.
2006
;
36
(
2
):
148
-
151
.
45.
Lee
RH
,
Kawano
T
,
Grover
SP
, et al
.
Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability
.
J Thromb Haemost
.
2022
;
20
(
2
):
422
-
433
.
46.
Pawlinski
R
,
Pedersen
B
,
Erlich
J
,
Mackman
N
.
Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice
.
Thromb Haemost
.
2004
;
92
(
3
):
444
-
450
.
47.
Brzoska
T
,
Tanaka-Murakami
A
,
Suzuki
Y
,
Sano
H
,
Kanayama
N
,
Urano
T
.
Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi
.
PLoS One
.
2015
;
10
(
3
):
e0122196
.
48.
Surette
AP
,
Madureira
PA
,
Phipps
KD
,
Miller
VA
,
Svenningsson
P
,
Waisman
DM
.
Regulation of fibrinolysis by S100A10 in vivo
.
Blood
.
2011
;
118
(
11
):
3172
-
3181
.
49.
Kaplan
ZS
,
Zarpellon
A
,
Alwis
I
, et al
.
Thrombin-dependent intravascular leukocyte trafficking regulated by fibrin and the platelet receptors GPIb and PAR4
.
Nat Commun
.
2015
;
6
:
7835
.
50.
Mattheij
NJA
,
Braun
A
,
van Kruchten
R
, et al
.
Survival protein anoctamin-6 controls multiple platelet responses including phospholipid scrambling, swelling, and protein cleavage
.
FASEB J
.
2016
;
30
(
2
):
727
-
737
.
51.
Chaudhry
SA
,
Serrata
M
,
Tomczak
L
, et al
.
Cationic zinc is required for factor XII recruitment and activation by stimulated platelets and for thrombus formation in vivo
.
J Thromb Haemost
.
2020
;
18
(
9
):
2318
-
2328
.
52.
Henderson
SJ
,
Xia
J
,
Wu
H
, et al
.
Zinc promotes clot stability by accelerating clot formation and modifying fibrin structure
.
Thromb Haemost
.
2016
;
115
(
3
):
533
-
542
.
53.
Henderson
SJ
,
Stafford
AR
,
Leslie
BA
, et al
.
Zinc delays clot lysis by attenuating plasminogen activation and plasmin-mediated fibrin degradation
.
Thromb Haemost
.
2015
;
113
(
6
):
1278
-
1288
.
54.
Darbousset
R
,
Thomas
GM
,
Mezouar
S
, et al
.
Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation
.
Blood
.
2012
;
120
(
10
):
2133
-
2143
.
You do not currently have access to this content.
Sign in via your Institution